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We now turn to a particularly interesting type of systems of differential equations, known formally as a gradient
system.
Definition. A gradient system on Rn is a system of differential equations of the form

X ′ = −gradV (X) (1)

for X ∈ Rn, where V : Rn → R is a smooth function with

gradV =
(

∂V

∂x1
, . . . ,

∂V

∂xn

)
(2)

The minus sign in (1) is is merely a convention, and as such we need not worry of it’s significance. As displayed
in (2), the gradient of a functions is simply an ordered list of it’s partial derivatives. However, it’s physical
significance severely outweighs what it portrays to be be. The gradient of a point in a vector field is a measure
of the direction and rate of fastest increase.
The following example is question 12, chapter 9 from Hirsch, Smale and Devaney’s Differential Equations,
Dynamical Systems, and an Introduction to Chaos.

Example 1.0. Let T be the torus defined as the square 0 ≤ θ1, θ2 ≤ 2π with opposite sides identified. Let
F (θ1, θ2) = cos θ1 + cos θ2. Sketch the phase portrait for the system −gradF in T . Sketch a three-dimensional
representation of this phase portrait with T represented as the surface of the doughnut.

Let X =
(

θ1

θ2

)
. Then we have the following system of equations;

X ′ =
(

θ′
1

θ′
2

)
=
(

−∂F/∂θ1

−∂F/∂θ2

)
=
(

sin θ1

sin θ2

)
(3)

A first order, nonlinear uncoupled system. In order to understand the way this system behaves, we must solve
for the equilibrium points of the system (namely, the pairs (θ1, θ2) such that X ′ = 0), and then linearize the
system to understand the local behaviour near these points.

The reader may notice, however, that there are in fact an infinite number of pairs (θ1, θ2) which solve X ′ = 0:
Any pair of the form (nπ, mπ) for n, m ∈ Q will do. To make the task easier for us, we restrict our view to the
square [0, 2π]θ1 × [0, 2π]θ2 . In which case, we are left with 9 distinct equilibrium which can be summarized as
{(nπ, mπ) : n, m ∈ {0, 1, 2}}. Now that we have our equilibrium points, we want to understand the local
behaviour of solutions to (3) in a neighbourhood of the equilibrium points. To do so, we take the Jacobian of X ′

to get a linear planar system of the form Y ′ = DFXY ;

DFX =
(

cos θ1 0
0 cos θ2

)
(4)

If we consider the equilibrium point (0, 0), we find a linear system given by

Y ′ = DF(0,0)Y =
(

1 0
0 1

)
Y (5)
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A planar system with repeated, positive eigenvalues. This is indicates that (0, 0) is a source, and locally,
solutions project directly outwards from this point. The identification of the other equilibrium are handled
similarly, and are left to the reader. Figure 1 shows the phase portrait of the system.

(0, 2π) (2π, 2π)

(0, 0) (2π, 0)

(π, 2π)

(0, π) (2π, π)

(π, 0)

Figure 1: Phase portrait of (3) on [0, 2π] × [0, 2π]

For a more interactive view of this phase portrait, visit Field Play . As is shown, at each of the four corners,
solutions flow out from a source, each of which falls into the sink located at (π, π). Moreover, the midpoints of
the perimeter each take the form of a saddle, with stable solutions flowing from the four corner, and the
unstable lines again flowing directly towards the sink.

Moreover, we can map this phase portrait onto the torus. While we can certainly parameterize the surface of
the torus using the map T : [0, 2π]u × [0, 2π]v → R3 defined by

T (u, v) = [(2 + cos u) sin u, (2 + cos uv) cos u, sin u] (6)

It is, in my opinion, far more motivating (and interesting) to visualize the topological construction of the torus.
More explicitly, we will construct the torus from a rectangular subset of R2. See Appendix A??.

https://anvaka.github.io/fieldplay/?dt=0.01&fo=0.9999994&dp=0.01&cm=3&cx=3.12245&cy=2.9934499999999997&w=14.4621&h=14.4621&pc=30000&vf=vec2%20get_velocity%28vec2%20p%29%20%7B%0A%20%20vec2%20v%20%3D%20vec2%280.%2C%200.%29%3B%0A%0Av.x%20%3D%20sin%28p.x%29%3B%0Av.y%20%3D%20sin%28p.y%29%3B%0A%0A%20%20return%20v%3B%0A%7D&code=vec2%20get_velocity%28vec2%20p%29%20%7B%0A%20%20vec2%20v%20%3D%20vec2%280.%2C%200.%29%3B%0A%0Av.x%20%3D%20sin%28p.x%29%3B%0Av.y%20%3D%20sin%28p.y%29%3B%0A%0A%20%20return%20v%3B%0A%7D
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The phase portrait mapped onto the torus can be seen in Figure 2, with colour coordinated solutions which
align with Figure 1. Only a sample of the lines have been plotted to allow for an easier viewing.

Figure 2: a) Purple Curves b) Blue Curves

For a more visual view of this torus, visit Math3D .

https://www.math3d.org/VRcXdRUMt

