N

D U

N|

oo

10
11
12
13
14
15
16
17

18
19

20

A SOLVER FOR LINEAR SCALAR ORDINARY DIFFERENTIAL EQUATIONS
WHOSE RUNNING TIME IS BOUNDED INDEPENDENT OF FREQUENCY

MURDOCK AUBRY* AND JAMES BREMER/'

Abstract. When the eigenvalues of the coefficient matrix for a linear scalar ordinary differential equation are of
large magnitude, its solutions exhibit complicated behaviour, such as high-frequency oscillations, rapid growth or rapid
decay. The cost of representing such solutions using standard techniques grows with the magnitudes of the eigenvalues.
As a consequence, the running times of most solvers for ordinary differential equations also grow with these eigenvalues.
However, a large class of scalar ordinary differential equations with slowly-varying coefficients admit slowly-varying
phase functions that can be represented at a cost which is bounded independent of the magnitudes of the eigenvalues
of the corresponding coefficient matrix. Here, we introduce a numerical algorithm for constructing slowly-varying
phase functions which represent the solutions of a linear scalar ordinary differential equation. Our method’s running
time depends on the complexity of the equation’s coefficients, but is bounded independent of the magnitudes of the
equation’s eigenvalues. Once the phase functions have been constructed, essentially any reasonable initial or boundary
value problem for the scalar equation can be easily solved. We present the results of numerical experiments showing that,
despite its greater generality, our algorithm is competitive with state-of-the-art methods for solving highly-oscillatory
second order differential equations. We also compare our method with Magnus-type exponential integrators and find
that our approach is orders of magnitude faster in the high-frequency regime.

1. Introduction. The complexity of the solutions of an n*" order linear homogeneous ordinary
differential equation

™ (1) + a0y (@) 4+ (Y () + ao(y(t) =0 (1.1)
increases with the magnitudes of the eigenvalues A1 (¢),..., A, (t) of the coefficient matrix
0 1 0 e 0 0
0 0 1 e 0 0
: - : 1.2
0 0 0 e 1 0 (12
0 0 0 e 0 1
—q(t) —q(t) —aq2t) - —gn2(t) —gn-1(t)

obtained from (1.1) in the usual way. Indeed, the cost to represent such solutions over an interval
[a, b] using standard techniques (e.g., polynomial or trigonometric expansions) typically grows roughly
linearly with the quantity

b
Q= max / [A:(2)| dt, (1.3)
i=1,...,n [,

which we refer to as the frequency of (1.1). We use this terminology because, in most cases of interest,
it is the imaginary parts of the eigenvalues which are of large magnitude. Indeed, when the real part
of one or more of the A;(¢) is large in size, most initial and terminal value problems for (1.1) are highly
ill-conditioned and solving them numerically requires specialized techniques which exploit additional
information about the desired solution.

Although the complexity of the solutions of (1.1) increases with frequency, a large class of linear scalar
ordinary differential equations admit phase functions whose cost to represent via standard techniques
is bounded independent of the magnitudes of the eigenvalues of (1.2). In fact, if o, . . ., gn—1 are slowly-
varying on an interval I and the differential equation (1.1) is nondegenerate there — meaning that
the eigenvalues A1 (t), ..., A\, (t) are distinct for each ¢t € I — then it is possible to find slowly-varying

*Department of Mathematics, University of Toronto (murdock.aubry@mail.utoronto.ca).

fDepartment of Mathematics, University of Toronto (bremer@math.toronto.edu).

1

This manuscript is for review purposes only.

mailto:murdock.aubry@mail.utoronto.ca
mailto:bremer@math.toronto.edu

39
40
41
42
43
14
15
46
47

(S
[«

J

60
61
62
63
64
65
66

67

D

N =7 = =~ = = = 3
> C N

~J

2 A. MURDOCK AND J. BREMER

phase functions 1, ...,%,: I — C such that
{exp (v;(t)) :j=1,...,n} (1.4)

is a basis for the space of solutions of (1.1) given on the interval I. That slowly-varying phase
functions exist under these conditions, at least in an asymptotic sense, has long been known. Indeed,
this observation is the basis of the WKB method and other related techniques (see, for instance, [21],
[26] and [25, 23, 24]). A theorem which establishes the existence of slowly-varying phase functions
for second order differential equations under mild conditions on their coefficients is proven in [10].
Although it is not immediately obvious how to generalize the argument of [10] to higher order scalar
equations, known results regarding the asymptotic approximation of solutions of differential equations
and numerical evidence (including the experiments of this paper) strongly suggest the situation for
higher order scalar equations is much the same as it is for second order equations.

The derivatives of the phase functions 11, . ..,%,, which we denote by r1,...,7,, satisfy an (n — 1)
order nonlinear inhomogeneous ordinary differential equation, the general form of which is quite
complicated. When n = 2, it is the Riccati equation

() + (r(6) + a1 (t)r(t) + qo(t) = 0; (1.5)
when n = 3, the nonlinear equation is
() + 30" ()7 () + (r(1))? + a2 () () + a2 (£)(r(£))* + a1 (£)r(t) + qo(t) = 0 (1.6)

and, for n = 4, we have
P(E) 4 (0)r(E) + B0 (1) + 65 ()(r(1)? + (r(0)* + as(0)(r(0))° + a5 (1)
+ 3qs(t)r (O (t) + q2(8) (r(£)? + q2(t)r' () + @1 (E)r(t) + qo(t) = 0.

By a slight abuse of terminology, we will refer to the (n — 1)* order nonlinear equation obtained by

inserting the representation
y(t) = exp (/r(t) dt) (1.8)

into (1.1) as the (n — 1)** order Riccati equation, or, alternatively, the Riccati equation for (1.1).

(1.7)

An obvious approach to initial and boundary value boundary problems for (1.1) calls for constructing a
suitable collection of slowly-varying phase functions by solving the corresponding Riccati equation nu-
merically. Doing so is not as straightforward as it sounds, however. The principal difficulty is that most
solutions of the Riccati equation for (1.1) are rapidly-varying when the eigenvalues A1 (t),..., A, (t)
are of large magnitude, and some mechanism is needed to select the slowly-varying solutions.

The article [8] introduces an algorithm for constructing two slowly-varying phase function ¢, and 9
such that exp(t1(t)) and exp(12(t)) constitute a basis in the space of solutions of a second order linear
ordinary differential equation of the form

Y1) +a®y(t) =0, a<t<b, (L9)

where ¢ is slowly-varying and non-vanishing on (a, b). It operates by constructing a smoothly deformed
version of the coefficient ¢ which is equal to an appropriately chosen constant in a neighborhood of
some point ¢ in (a,b) and coincides with the original coefficient ¢ in a neighborhood of a point d in
(a,b). There is a pair of slowly-varying phase functions for the deformed equation whose derivatives at
¢ are known and whose derivatives at d coincide with the derivatives of a pair of slowly-varying phase
functions for the original equation. Consequently, by solving the Riccati equation corresponding to
the deformed equation with initial conditions specified at ¢, the values of the derivatives of a pair
of slowly-varying phase functions for the original equation at the point d can be calculated. Once
this has been done, the Riccati equation corresponding to the original equation is solved using the

This manuscript is for review purposes only.

78
79
80
81

83
84
85
86
87
88
89
90
91
92

93
94
95
96
97

98

99

107
108
109
110

112
113
114
115

116
117

118

119

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 3

values at d as initial conditions in order to calculate the derivatives of a pair of slowly-varying phase
functions for (1.9) over the whole interval. The desired slowly-varying phase functions %; and 1y are
obtained by integration. The cost of the entire procedure is bounded independent of the magnitude
of ¢, which is related to the eigenvalues of the coefficient matrix corresponding to (1.9) via

M) = V=a) and () = —/~q(D). (1.10)

From (1.10), it follows that the assumption that ¢ is non-vanishing on (a,b) is equivalent to the
condition that (1.9) is nondegenerate on (a,b). In [9], the method of [8] is extended to the case in
which (1.9) is nondegenerate on an interval [a,b] except at a finite number of turning points. The
equation (1.1) has a turning point at ¢y provided the eigenvalues A1 (t), ..., A, (t) of (1.2) are distinct
in a deleted neighborhood of ¢, but coalesce at tg. The turning points of (1.9), then, are precisely the
isolated zeros of ¢q. Because slowly-varying phase functions need not extend across turning points, the
algorithm of [9] introduces a partition a = & < & < ... < & = b of [a,b] such that &,... &1 are
the roots of ¢ in the open interval (a,b). It then applies a variant of the method of [8] to each of the
subintervals [¢;,&;41], 7 = 1,...,k — 1, which results in a collection of 2(k — 1) slowly-varying phase
functions that efficiently represent the solutions of (1.9).

It is relatively straightforward to generalize the approach of [8] to the case of nondegenerate higher
order scalar equations. However, while the resulting algorithm is highly-effective for a large class of
equations of the form (1.1), the authors have found another approach inspired by the classical Levin
method for evaluating oscillatory integrals to be somewhat more robust. Introduced in [17], the Levin
method is based on the observation that if pg and f are slowly varying, then the inhomogeneous
equation

y'() + po(t)y(t) = f(2) (1.11)

has a slowly-varying solution yg, regardless of the magnitude of py. Similarly to the case of phase
functions, the proofs appearing in [17] and subsequent works on the Levin method do not immediately
apply to the case of higher order scalar equations, but experimental evidence and results for special
cases strongly suggest that the Levin principle generalizes. That is to say, equations of the form

Yy () + Pt (y" () + -+ pr (DY (8) + po(t)y(t) = f (). (1.12)

admit solutions whose complexity depends on that of the right-hand side f and of the coefficients
D0, - - -y Pn—1, but is bounded independent of the magnitudes of pg, ..., pp_1.

The algorithm of this paper exploits the existence of slowly-varying phase functions and the Levin
principle to solve initial and boundary value problems for nondegenerate scalar equations of the form
(1.1) with slowly-varying coefficients. It operates by constructing slowly-varying phase functions
Y1 ..., 1, such that (1.4) is a basis in the space of solutions of a nondegenerate scalar equation. Once
this has been done, any reasonable initial or boundary value problem for (1.1) can be solved more-
or-less instantaneously. As with [8], the method of this paper can be extended to the case of a scalar
equation which is nondegenerate on an interval [a,b] except at a finite number of turning points by
applying it on a collection of subintervals of [a, b]; however, for the sake of simplicity, we consider only
nondegenerate equations here.

The algorithms of [8], [9] and this article bear some superficial similarities to Magnus expansion
methods. Introduced in [20], Magnus expansions are certain series of the form

igk(t) (1.13)
k=1

such that exp (3, Qx(t)) locally represents a fundamental matrix for a system of differential equa-

This manuscript is for review purposes only.

120

124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152

e e e e e
v Ov Ut Ut ot Ot Ot
© 00 J O Uk W

160
161

4 A. MURDOCK AND J. BREMER

tions

y'(t) = A(t)y(®). (1.14)

The first few terms for the series around ¢t = 0 are given by
t
u(t) = [) ds,
0
1 [t oo
Qz(t) = 5/ / [A(tl),A(tQ)] dthtl and (115)
o Jo

1 t t1 to
0u) = 5 [[[(40 [AG). A + Ak, [AG). Aw) desdadts

The straightforward evaluation of the 2; is nightmarishly expensive; however, a clever technique which
renders the calculations manageable is introduced in [15] and it paved the way for the development of
a class of numerical solvers which represent a fundamental matrix for (1.14) over an interval I via a
collection of truncated Magnus expansions. While the entries of the {); are slowly-varying whenever
the entries of A(t) are slowly-varying, the radius of convergence of the series in (1.13) depends on the
magnitude of the coefficient matrix A(t), which is, in turn, related to the magnitudes of the eigenvalues
of A(t). Of course, this means that the number of Magnus expansions which are needed to solve a
given problem, and hence the cost of the method, grows with the magnitudes of the eigenvalues of
A(t). See, for instance, [13], which gives for estimates of the growth in the running time of Magnus
expansion methods in the case of an equation of the form (1.9) as a function of the magnitude of the
coefficient q.

Nonetheless, Magnus expansion methods are much more efficient than standard solvers for ordinary
differential equations in the high-frequency regime. Indeed, exponential integrators which approximate
Magnus expansions while avoiding the explicit calculation of commutators (those discussed in [6], for
instance) appear to be the current state-of-the-art approach to solving scalar ordinary differential
equations of order three or higher. In our experiments, we compare our method against 4** and 6"
order “classical” Magnus methods which explicitly make use of commutators, as well as 4** and 6"
order commutator-free quasi-Magnus exponential integrators. Since the running time of our algorithm
is largely independent of frequency, our method is orders of magnitude faster than Magnus-type
methods in the high-frequency regime. Perhaps surprisingly, we find that it is also faster even at quite
low frequencies. We note, though, that Magnus expansion methods are more general than our method
in that they apply to systems of linear ordinary differential equations and not just scalar equations.
Our experiment comparing our approach with Magnus-type methods is described in Subsection 5.2.

We also compare our method with two specialized algorithms for second order equations: the smooth
deformation method of [8] (which was developed by one of the authors of this paper) and the ARDC
method of [1]. These represent current state-of-the-art approaches to solving second order equations
in the high-frequency regime. In the comparison made in Subsection 5.1, we find that, despite its
much greater generality, the algorithm of this paper is only slightly slower than that of [8] and it is
as much as 15 times faster than the ARDC method of [1].

The remainder of this article is organized as follows. In Section 2, we discuss the results of [10] per-
taining to the existence of slowly-varying phase functions for second order linear ordinary differential
equations. Section 3 describes how the Levin principle can be exploited to compute these slowly-
varying phase functions. In Section 4, we detail our numerical algorithm. The results of numerical
experiments demonstrating the properties of our algorithm are discussed in Section 5. These exper-
iments include comparisons with state-of-the-art methods for the special case of second order linear
ordinary differential equations and with Magnus-type exponential integrators. We briefly comment
on the algorithm of this article and directions for future work in Section 6. Appendix A details a
standard adaptive spectral solver for ordinary differential equations which is used by our algorithm

This manuscript is for review purposes only.

162

163
164

165

166
167
168
169
170
171

172

179

180

181

182
183

186
187

188

189

190

191
192

193

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 5

and to construct reference solutions in our numerical experiments.

2. Slowly-varying phase functions for second order equations. Here, we briefly discuss
the results of [10], which pertain to second order equations of the form

y'(t) +wiq)y(t) =0, a<t<b, (2.1)

with go smooth and positive. Under these assumptions, the solutions of (2.1) are oscillatory, with
the frequency of their oscillations controlled by the parameter w. Analogous results hold when ¢q is
negative and the solutions of (2.1) are combinations of rapidly increasing and decreasing functions. It is
not obvious, however, how to apply the argument of [10] to higher order scalar equations. Nonetheless,
there are strong indications, including relevant well-known results in asymptotic analysis (see, for
instance, [26]) and experimental evidence, that the situation for higher order scalar equations is
similar.

If y(t) = exp(¢p(t)) satisfies (2.1), then it can be trivially verified that 1 solves the Riccati equation

W () + (W' (1) + wieo(t) = 0. (2.2)

By inserting the expression ¢ (t) = ia(t) + B(t) into (2.2), we see that if & and 3 satisfy the system of
equations

B"(t) + (B'(1)* = (o'(1)* + w’qo(t) = 0 (2.3)
o' (t) + 20/ (1)B'(t) = 0, '
then v solves (2.2). The second equation in (2.3) admits the formal solution
B(t) = — log(a’ (1), (24)

so that 1 can be written in the form

U(t) = ialt) — 3 log (! (1)) (2.5)

Because of the close relationship between « and v, both are referred to as phase functions for (2.1).
Moreover, a bound on the complexity of one readily gives a bound on the complexity of the other.

Inserting (2.4) into the first equation in (2.3) yields

" 2 o
wiqo(t) — (o/(1)* + Z ((();’((tt))> - % o/((tt)) =0. (2.6)

Equation (2.6) is known as Kummer’s equation, after E. E. Kummer, who studied it in [16]. The
theorem of [10] applies when the function p(z) = p(t(z)), where p(t) is defined via

- (50N a®)
P8 = e (4 <qo<t>) qo<t>> o

and t(z) is the inverse function of

x(t) = / Vao(s) ds, (2.8)

has a rapidly decaying Fourier transform. More explicitly, the theorem asserts that if the Fourier
transform of p satisfies a bound of the form

P& < Texp (—pnlé]), (2.9)

This manuscript is for review purposes only.

194

195

196

197

212
213
214
215
216

6 A. MURDOCK AND J. BREMER

then there exist functions v and ¢ such that

pio) < 5 (1 n ‘f) exp(—), (2.10)
o] < 2z (1+ %) exvt-sle) (2.11)

and
at) = wv/qo(t) /at exp (5(U)> du (2.12)

is a phase function for

v(t
')+ (a0 + 59) o) =0, (213)
Because the magnitude of v decays exponentially fast in w, Equation (2.13) is identical to (2.1) for
the purposes of numerical computation when w is of even very modest size. The definition of the
function p(x) is ostensibly quite complicated; however, p(z) is, in fact, simply a constant multiple of

Schwarzian derivative of the inverse function ¢(x) of (2.8).

This result ensures that for all values of w, (2.1) admits a phase function which is slowly-varying.
In the low-frequency regime, when w is small, it can be the case that all phase functions for (2.1)
oscillate, but they do so at low frequencies because w is small. Once w becomes sufficiently large,
the function v is vanishingly small, and the phase function associated with (2.13) is, at least for the
purposes of numerical computation, a slowly-varying phase function for the original equation (2.1).
Since v decays exponentially fast in w, this happens at extremely modest frequencies.

Because of this phenomenon, in the low-frequency regime, the running time of numerical algorithms
based on phase functions tend to grow with frequency. However, once a certain frequency threshold
is reached, the complexity of the phase functions becomes essentially independent of frequency, or
even slowly decreasing with frequency. This phenomenon can be clearly seen in all of the numerical
experiments of this paper presented in Section 5.

3. The Levin approach to solving nonlinear ordinary differential equations. In
its original application to oscillatory integrals, Levin’s principle was used to construct slowly-varying
solutions to inhomogeneous linear ordinary differential equations. However, it can also be exploited to
construct slowly-varying solutions of nonlinear ordinary differential equations, specifically the (n—1)%¢
order Riccati equation.

When Newton’s method is applied to the (n — 1)t order Riccati equation corresponding to (1.1), the
result is a sequence of linearized equations of the form

Yy + a2y TH () (DY (1) + po(8)y(t) = F(B). (3.1)

Assuming the coefficients qq, . .., q,_1 and the the initial guess used to initiate the Newton procedure
are slowly-varying, the coefficients py, ..., p,_2 and the right-hand side f appearing in the first lin-
earized equation of the form (3.1) which arises will also be slowly-varying. According to the Levin
principle that equation admits slowly-varying solutions. If such a solution is used to update the initial
guess, then the second Newton iterate will also be slowly-varying and the second linear inhomoge-
neous equation which arises will have slowly-varying coefficients and a slowly-varying right-hand side.
Continuing in this fashion results in a series of linearized equations of the form (1.12), all of which
have slowly-varying coefficients and slowly-varying right-hand sides. Consequently, a slowly-varying
solution of the Riccati equation can be constructed via Newton’s method as long as an appropriate
slowly-varying initial guess is known.

This manuscript is for review purposes only.

235
236

238

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 7

Conveniently enough, there is an obvious mechanism for generating n slowly-varying initial guesses
for the (n — 1)*! order Riccati equation. In particular, the eigenvalues A1 (), ..., \,(t) of the matrix
(1.2), which are often used as low-accuracy approximations of solutions of the Riccati equation in
asymptotic methods, are suitable as initial guesses for the Newton procedure.

Complicating matters slightly is the fact that the differential operator
DIyl (t) = 4" () + pa—2()y" 2 () + -+ p1()y' (y) + po(t)y(t) (3.2)

appearing on the left-hand side of (3.1) admits a nontrivial nullspace which can contain rapidly-varying
functions when one or more of the p; is of large magnitude. It is a central observation of Levin-type
methods, however, that when (3.1) admits slowly-varying solutions along with rapidly-varying ones,
a slowly-varying solution can be accurately and rapidly computed provided some case is taken. In
particular, as long as one uses a Chebyshev spectral collocation scheme which is sufficient to resolve
the coefficients pg, . . ., p,_1 as well as the right-hand side f and the resulting linear system is solved via
a truncated singular value decomposition, a high-accuracy approximation of a slowly-varying solution
of (3.1) is obtained. Critically, the discretization need not be sufficient to resolve the rapidly-varying
solutions of (3.1) so that the cost of solving the equation depends only on the complexity of the desired
slowly-varying solution, rather than on the complexity of the rapidly-varying elements of the nullspace
of (3.2). Numerical evidence to this effect in the case n = 2 is provided in [18] and [19], and a detailed
analysis is given in [11].

4. Numerical Algorithm. In this section, we describe our method for the construction of
a collection of slowly-varying phase functions 1, ...,, such that (1.4) is a basis in the space of
solutions of a nondegenerate equation of the form (1.1) with slowly-varying coefficients. Once these
phase functions have been constructed, any reasonable initial or boundary value problem for (1.1) can
be easily solved. Recall that we use rq,...,r, to denote the first derivatives of the phase functions

1/)1,~~71/Jn.

The algorithm operates in two stages, each of which is detailed in a subsection below. In the first
stage, the Levin principle is used to find the values of ry,...,r, and their derivatives up to order
(n — 2) at a point in the solution domain of the scalar equation. In the second stage, the Riccati
equation corresponding to (1.1) is solved using these values as initial conditions in order to calculate
r1,...,r, and their derivatives through order (n — 2) over the entire solution interval and the phase
functions v, ...,, are obtained by integrating ry,...,r,.

Our algorithm takes as input the following:
1. the interval [a, b] over which the equation is given;
2. an external subroutine for evaluating the coefficients qo, ..., gn—1 in (1.1);

3. a subinterval [ag, bg] of [a, b] over which the Levin procedure is to be applied and a point ¢ in
that interval;

4. a point n on the interval [a, b] and the desired values ¥1(n), ..., ¥, (n) for the phase functions
at that point;

5. an integer k which controls the order of the piecewise Chebyshev expansions used to represent
the phase functions and their derivatives; and

6. a parameter ¢ which specifies the desired accuracy for the solutions of the Riccati equation
computed in the second stage of the algorithm.

The output of our algorithm comprises n? piecewise Chebyshev expansions of order (k—1), representing
the phase functions 91, ..., 1, and their derivatives through order (n — 1). To be entirely clear, by a

This manuscript is for review purposes only.

[\)
-3
co

279

280
281
282
283
284

285
286

287

288
289
290

291

292

293

294

295

296

298

299
300

w
—_

8 A. MURDOCK AND J. BREMER

(k — 1)t order piecewise Chebyshev expansions on the interval [a,b], we mean a sum of the form
m—1 k—1
2 T; + Ti—1
L (t Aij T t
> a8 o0 T (e
1 (4.1)
— 2 Tm + Tm—1
+ t Ami T t+
X1l)]Z—:o e <xm — Tl Ty — Tmo1)’
where a = 9 < 1 < --- < x,, = b is a partition of [a,b], xs is the characteristic function on the

interval I and T} is the Chebyshev polynomial of degree j. We note that the terms appearing in the
first line of (4.1) involve the characteristic function of a half-open interval, while that appearing in the
second involves the characteristic function of a closed interval. This ensures that exactly one term in
(4.1) is nonzero for each point ¢ in [a,].

4.1. The Levin procedure. In this first stage of the algorithm, the values of r1,...,r, and
their derivatives through order (n — 2) at the point o in the subinterval [ag,by] are calculated. It
proceeds as follows:

1. Construct the k-point extremal Chebyshev grid t1,...,t; on the interval [ag,bg] and the
corresponding k X k Chebyshev spectral differentiation matrix D. The nodes are given by the

formula
t-:bo_aocos n=J +b0+a0 (4.2)
J 2 n—1 2 ’
The matrix D takes the vector of values
f(t1)
f(t2)
. (4.3)
f(tr)

7=0
to the vector
f(t)
f'(t2)
. (4.5)
f'(t)
of the values of its derivatives at the nodes t1,...,t;.
2. Evaluate the coefficients qq, . . ., ¢,_1 at the points t1, ..., t; by calling the external subroutine
supplied by the user.
3. Calculate the values of n initial guesses 71,...,r, for the Newton procedure at the nodes

This manuscript is for review purposes only.

318

319

320

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 9

t1,...,tx by first computing the eigenvalues of the coefficient matrices
0 1 0 e 0 0
0 0 1 e 0 0
Aj = : K : (4.6)
0 0 0 e 1 0
0 0 0 . 0 1
—qo(t;) —qit;) —a(t;) -+ —gn-2(t;) —@n-1(t;)
for j =1,..., k. More explicitly, the eigenvalues of A; give the values of r1(t;),...,rn(t;). The
values of the first (n — 2) derivatives of r1,...,7, at the nodes t,...,t; are then calculated

through repeated application of the spectral differentiation matrix D.

. Perform Newton iterations in order to refine each of the initial guesses rq, ..., r,. Because the

general form of the Riccati equation is quite complicated, we illustrate the procedure when
n = 2, in which case the Riccati equation is

7 (t) + (r()* + g1 ()r(t) + qo(t) = 0. (4.7)

In each iteration, we perform the following steps:

(a) Compute the residual
E(t) =1'(t) + (r(t)* + ar(t)r(t) + qo(t) (4.8)

of the current guess at the nodes tq,..., .

(b) Form a spectral discretization of the linearized operator
L[6]) () =&"(t) + 2r(t)d(t) + q1(t)d(¢). (4.9)

That is, form the k& x k matrix

2r(t1) + q1(t1)
2r(t2) + qi(t2)
B=D+ . . (4.10)

2r(ty) + qi(tr)

(c) Solve the k x k linear system

(t1) &(t1)
d(t2) &(t2)
B : = : (4.11)
5(t1) (t)
and update the current guess:
’/‘(tl) T(t1) 5(t1)
T(tg) T(tg) 5(t2)
: = : + : . (4.12)
(i) r(t) (1)

We perform a maximum of 8 Newton iterations and the procedure is terminated if the value
of

max|3(t;)] (4.13)

This manuscript is for review purposes only.

349
350

w

w W

Y Ot R W N

w

J

ot Ot ot Ot Ot Ot Ot

)
oo

w
ot

360

362

363
364
365
366
367
368
369
370

371

10 A. MURDOCK AND J. BREMER

is smaller than

100€ep, max |r(t;)|, (4.14)
J=1,k
where €y ~ 2.220446049250313 x 10716 denotes machine zero for the IEEE double precision
number system.

5. We use Chebyshev interpolation to evaluate r1, ..., r,, and their derivatives of orders through
(n —2) at the point o € [ag, by]. These are the outputs of this stage of the algorithm.

Standard eigensolvers often produce inaccurate results in the case of matrices of the form (4.6),
particularly when the entries are of large magnitude. Fortunately, there are specialized techniques
available for companion matrices, and the matrices appearing in (4.6) are simply the transposes of
such matrices. Our implementation of the procedure of this subsection uses the backward stable and
highly-accurate technique of [4, 3] to compute the eigenvalues of the matrices (4.6).

Care must also be taken when solving the linear system (4.11) since the associated operator has a
nontrivial nullspace. Most of the time, the discretization being used is insufficient to resolve any part of
that nullspace, with the consequence that the matrix B is well-conditioned. However, when elements
of the nullspace are sufficiently slowly-varying, they can be captured by the discretization, in which
case the matrix B will have small singular values. Fortunately, it is known that this does not cause
numerical difficulties in the solution of (4.11), provided a truncated singular value decomposition is
used to invert the system. Experimental evidence to this effect was presented in [18, 19] and a careful
analysis of the phenomenon appears in [11]. Because the truncated singular value decomposition is
quite expensive, we actually use a rank-revealing QR decomposition to solve the linear system (4.11)
in our implementation of the procedure of this subsection. This was found to be about five times
faster, and it lead to no apparent loss in accuracy.

Rather than computing the eigenvalues of each of the matrices (4.6) in order to construct initial guesses
for the Newton procedure, one could accelerate the algorithm slightly by computing the eigenvalues of
only one A; and use the constant functions r1(t) = A1(¢;),...,r(t) = A, (t;) as initial guesses instead.
We did not make use of this optimization in our implementation of the algorithm of this paper.

4.2. Construction of the phase functions.. Next, for each j = 1,...,n, the Riccati
equation is solved using the value of r;(c) to specify the desired solution. These calculations are
performed via the adaptive spectral method described in Appendix A. The parameters k and ¢ are
passed to that procedure. Since most solutions of the Riccati equation are rapidly-varying and we
are seeking a slowly-varying solution, these problems are extremely stiff. The solver of Appendix A is
well-adapted to such problems; however, essentially any solver for stiff ordinary differential equations
would serve in its place. The result is a collection of n? — n piecewise Chebyshev expansions of order
(k — 1) representing the derivatives of the phase functions 1, ...,%, of orders 1 through (n — 1).
Finally, spectral integration is used to construct n additional piecewise Chebyshev expansions which
represent the phase functions 1, ...,1, themselves. The particular antiderivatives are determined
by the values 1 (n), ..., ¥, (n) specified as inputs to the algorithm.

5. Numerical experiments. In this section, we present the results of numerical experiments
which were conducted to illustrate the properties of the method of this paper. We implemented
our algorithm in Fortran and compiled our code with version 13.2.1 of the GNU Fortran compiler.
All experiments were performed on a single core of a workstation computer equipped with an AMD
3995WX processor and 256GB of RAM. No attempt was made to parallelize our code. The large
amount of RAM was needed to calculate reference solutions using a standard ODE solver.

Our algorithm calls for computing the eigenvalues of matrices of the form (1.2). Unfortunately,
standard eigensolvers lose significant accuracy when applied to many matrices of this type. However,
because the transpose of (1.2) is a companion matrix, we were able to use the highly-accurate and

This manuscript is for review purposes only.

372
373

[GLENTEN

W W W W W
(=2}

~N 3 3 3

o

379
380
381
382
383
384
385
386
387
388
389

390
391

392
393
394

395

396

113

114

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 11

backward stable algorithm of [4, 3] for computing the eigenvalues of companion matrices to perform
these calculations.

In all of our experiments, the value of the parameter k, which determines the order of the Chebyshev ex-
pansions used to represent phase functions was taken to be 16, the particular antiderivatives ¥1, ..., %,
of the functions rq, ..., r, were chosen through the requirement that ¢ (0) = 15(0) = --- =,(0) =0
and the Levin procedure was performed on the subinterval [0.0,0.1]. The parameter ¢ which controls
the accuracy of the obtained phase functions was taken to be 1072

We tested the accuracy of the method of this paper by using it to calculate solutions to initial
and boundary value problems for scalar equations and comparing the results to reference solutions
constructed via the standard adaptive spectral method described in Appendix A. Because the condition
numbers of these initial and boundary value problems for (1.1) grow with frequency, the accuracy of
any numerical method used to solve them is expected to deteriorate with increasing frequency. In
the case of our algorithm, the phase functions themselves are calculated to high precision, but their
magnitudes increase with frequency and accuracy is lost when the phase functions are exponentiated.
One implication is of this is that calculations which involve only the phase functions and not the
solutions of the scalar equation can be performed to high accuracy. The article [7], for example,
describes a scheme of this type for rapidly computing the zeros of solutions of second order linear
ordinary differential equations to extremely high accuracy.

To account for the vagaries of modern computing environments, all reported times were obtained by
averaging the cost of each calculation over either 1,000 runs.

5.1. Comparison with two specialized methods for second order equations. We
first compared the performance of the Levin-type method of this paper with the smooth deformation
scheme of [8] developed by one of this paper’s authors, and with the ARDC method of [1].

For each v = 2°,2!,22 ... 220 and each of the three methods considered, we solved Legendre’s
differential equation

(1 —)" (t) = 2t/ (t) + v(v + D)y(t) = 0 (5.1)

in order to obtain the Legendre polynomial P, of degree v over the interval [0.0,0.999]. The algorithm
of [1] makes it somewhat difficult to evaluate solutions at arbitrary points inside the solution domain,
so we settled for measuring the error in each obtained solution by comparing its value at ¢ = 0.999
against the known value of P,(0.999).

We used the implementation of the method of [8] available at:
https://github.com/JamesCBremerJr /Phase-functions

We used an implementation of the ARDC method designed specifically for solving Legendre’s differ-
ential equation which was suggested to us by one of the authors of [1]. It is available at:

https://github.com/fruzsinaagocs/riccati/tree/legendre-improvements

The more general implementation of the ARDC method used in the experiments of [1], which does
not perform as well in this experiment, can be found at:

https://github.com/fruzsinaagocs/riccati

The input parameters for the algorithms of [8] and [1] were set as follows. For the method of [8], we set
the parameter k£ controlling the order of the piecewise Chebyshev expansions used to represent phase
functions to be 16, and took the parameter e specifying the desired accuracy for the phase functions
to be 107!2. For [1], we used the default parameters provided by the authors’ code.

Figure 1 presents the results of this experiment. We observe that the method of this paper achieves

This manuscript is for review purposes only.

https://github.com/JamesCBremerJr/Phase-functions
https://github.com/fruzsinaagocs/riccati

415
416
417
418
419
420
421
422
123
124
125

426

427
428
129
130
431

432
433
134
135
436
437
438

439
140
141
449
443
144
145

12 A. MURDOCK AND J. BREMER

40 67 10°°
— Levin — Levin —— Levin
I Deformation t =3 B R Deformation 108 - Deformation
230 ARDC g ARDC 5 ARDC
o c4 £
o 9 1w 10710
)) o
=20 =3 5
£ £ g 10712
] o2 o
E 10 E <
F Fq 10714
-16
020 22 24 26 28 210 %10 212 214 216 218 220 10 2!
v v

Fig. 1: The results of the experiment of Subsection 5.1 in which the Levin-type method of this paper,
the smooth deformation scheme of [8] and the ARDC method of [1] are compared. The left-most plot
gives the time required by each algorithm as a function of v, but only for the low-frequency regime.
The middle plot gives the time required by each algorithm in the high-frequency regime. The plot on
the right shows the absolute error in the value of the Legendre P,(0.999) obtained by each algorithm
as a function of v.

similar accuracy to that of [8], but is a bit slower. Although [1] claims that ARDC achieves a ten
times speed improvement over the method of [8], we have not found this to be the case. At frequencies
below 27, the ARDC method is both noticeably slower and less accurate than both the other methods.
For example, when v = 28, the algorithm of this paper takes around 1.8 milliseconds and achieves 13
digits of accuracy, that of [8] takes approximately 0.81 milliseconds and achieves 15 digits of accuracy
while the ARDC method takes more than 30 milliseconds and obtains only 11 digits of accuracy. In
particular, ARDC can be as much as 15 times slower than the method of this paper and 30 times
slower than the algorithm of [8]. At higher frequencies, ARDC achieves similar levels of accuracy to
[8] and the method of this paper, but it is more than a factor of two slower than the algorithm of
this paper and more than a factor of three slower than the method of [8]. The discrepancy between
results reported in [1] and the results of this experiment appears to be attributable to the use of an
unoptimized, highly inefficient implementation of [8] in the experiments of [1].

As explained in Section 2, in the low-frequency regime, the running times of all three methods increase
with w. However, once a certain frequency threshold is reached, the running times decrease rapidly
and then become essentially independent of frequency, or even continue to decrease slowly as functions
of w. We note that, in our plots, this phenomenon is more apparent in the case of the ARDC method
because of the much greater cost of that algorithm in the low-frequency regime.

5.2. Comparison with Magnus-type exponential integrators. In our second experiment,
we compared the performance of our algorithm with that of four methods based on Magnus-type
exponential integrators. We use MG4 to refer to the 4" order Magnus exponential integrator given
by (2.9) in [14]; MG6 denotes the 6! order Magnus exponential integrator specified by (3.10) in [5]; we
use CF4 to refer to 4*" order two exponential commutator-free quasi-Magnus exponential integrator
listed in Table 2 of [6]; and CF6 is the first of the 6" order five exponential commutator-free quasi-
Magnus exponential integrators listed in Table 3 of [6].

The performance of exponential integrator methods depends critically on proper step length control.
In order to give every possible benefit to the methods we compare our scheme against, we use the
following two-phased approach. In the first phase, which was not timed, we determined a sequence
of appropriate step sizes via a greedy algorithm. More explicitly, at each step, we started with a
large step size h and repeatedly reduced it by a factor of 0.95 until an estimate of the local error fell
bellow € = 107 !2. The local error estimate was obtained by taking two steps of length h/2 in order
to produce a (hopefully) superior approximation of the value of the solution at the terminal point. In

This manuscript is for review purposes only.

446
447

448

449

456
157
458
459
460

461
462
463
164

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 13

1074

—— MG4 ——- CF6
1078 CF4 —— Levin

10—8 1
10—10 1

1012 ==

Absolute Error

10—14 |

10—16

Fig. 2: The errors in the solutions of the initial value problem of Subsection 5.2 obtained via four
Magnus-type exponential integrator methods and the Levin-type algorithm of this paper.

the second phase, the equation was solved using the precomputed sequence of step lengths. It is only
the second phase of the calculation which was timed.

For each w = 29,21, ... 2! and each of the five methods, we solved the differential equation
y" () + e2()y" () + a1 ()Y (t) + o (t)y(t) =0, (5.2)
where
w (e'w — i) (cos(8t) + 3) ((t* + 1) cos(3t) — iw)
a(t) = - 2 +1
w (= (w1 (2 +1)) cos(8t) + e'w (3% + (1> + 1) cos(8t) 4 4) — 3it> — 3w — 4i)
a(t) = 211 t 53

cos(3t) (i (¢! —3) w —iwcos(8t) + 1) and
. 1 " .
= _ — —1
g2(t) =1 <t2 7€ + 3> w + iw cos(8t) — cos(3t) — 1,

over the interval [0, 0.1] subject to the conditions
y(0) =1, ¢ (0)=iw and %"(0)= (iw)* (5.4)

The eigenvalues of the coefficient matrix corresponding to Equation (5.2) are

A (t) =1+ie'w, Aa(t) = cos(3t) — and A3(t) = —iw(cos(8¢) + 3). (5.5)

iw
t2+1
As in the case of the experiment of the last section, owing to the difficulty of computing solutions at
arbitrary points using step methods, we assessed the accuracy of the obtained solutions by measuring
the absolute error in their values at the endpoint ¢ = 0.1 of the solution domain only. Moreover,
we only considered values of w up to 2'* because the cost of finding appropriate step sizes becomes
excessive for larger values of w.

Figure 2 and Table 1 give the results. We observe that all of the methods achieve reasonably accuracy
given the requested level of precision. Not surprisingly, given the difference in the asymptotic behav-
iour of the running time of these algorithms with respect to frequency, the algorithm of this paper
is orders of magnitude faster than the exponential integrator methods at high frequencies. In fact,

This manuscript is for review purposes only.

465
466
467
168
469

14 A. MURDOCK AND J. BREMER

when w = 24, our approach is more than 3,000 times faster than the most efficient of the exponential
integrator methods. What is perhaps surprising, is that the algorithm of this paper is faster than the
various exponential integrator methods even at very low frequencies. This is indicative of the fact
that, even in the low-frequency regime, phase functions are not much more expensive to represent
than the solutions of the scalar equation itself.

5.3. A boundary value problem for a third order equation. In the experiment described
in this section, we considered the equation

y"'(t) + a2(t)y" (t) + a1 ()y' () + qo(t)y(t) = 0, (5.6)
where
qo(t) = —ie'tw (et - iet2w> (cos(12t) + 2),
@ (t) = ew (2w — i€e't) +w (et2w + et (t + 1)) cos(12t) + €' (e't 4 2i(t + 1)w) and (5.7)
q2(t) = iel" w — iw cos(12t) — e (t + 1) — 2iw.
The eigenvalues of the coefficient matrix corresponding to (5.6) are
g g
A1 (t) = iw(cos(12t) +2), Aa(t) =te' and A3(t) =e' — it w. (5.8)
For each w = 20,21 ... 220 we used our algorithm to solve (5.6) over the interval [—1, 1] subject to
the conditions
y(-1)=y(1)=1 and y'(-1)=0. (5.9)

We measured the absolute error in each resulting solution at 10,000 equispaced points in the interval
[—1,1] via comparison with a reference solution constructed using the solver of Appendix A.

w MG4 CF4 MG6 CF6 Levin

20 2.79%x107%9 3.77x107% 9.70x107%* 9.89x107% 6.88x107%
2l 3.72x1079% 4.96x1079% 1.46x107% 1.46x107% 7.07x107%
22 7.42x107%9% 8.97x1079 2.95x1079 2.45x107% 7.35x107%
23 1.51x10792 147x1079%2 5.42x1079 3.44x1079 8.91x107%
24 255%x10792 244x10792 9.71x1079 6.42x1079 7.57x107%
2% 4.42%x10792 4.59%x107°%2 1.94x107°% 1.23x1079% 7.60x107%4
26 7.79%x10792 8.07x10792 3.48x1079%2 2.13x1079%2 7.61x10%
27 1.35x107% 1.40%x1079" 6.46x1079% 3.99x10792 7.62x107%
28 248x107% 248x1079" 1.13x1079 7.21x1079% 7.63x107%
29 4.35%x10790 4.40x107% 2.14x107% 1.31x10791 7.43x10794
210 761x107%0 7.59%107%1 3.95x107% 241x107%' 7.42x107%
211 1.35%101%° 1.30x107%0 6.96x107°1 4.27x107%" 7.41x107%
212 295%x10100 2.925%x101%0 1.29%107%0 7.93x107%" 7.42x10~%
213 3.88x107%% 3.95%x101%0 2.27x10%%0 1.41x107%° 7.40%x107%
21 6.78%x101T90 7.02x10799 4.36x10T90 2.74x101T%°0 7.41x1079%¢

Table 1: The time, in second, required by four Magnus-type exponential integrator methods and the

Levin-type algorithm of this paper to solve the initial value problem of Subsection 5.2.

This manuscript is for review purposes only.

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 15

60 1074 6000

%50 g 106 £ 5000
g i} 2
I} I} -8 2
g a0 £ 10 £ 4000
2 2 8
Z30 g2107% ¢ 3000
< £ 2
=20 510722 $ 2000
£ £ $
F 10 E10m 5 1000

0 0 2 4 6 8 10 10715 0 2 4 6 8 10 0 0 2 4 6 8 10

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

w w w
12 1074 1200
Z10 2 1076 £ 1000
2 w Q
g8 £ 1078 £ 800
@ S 8
= 410710 S 600
€ < z
£ € <
= 4 510712 0 400
2 E a
= X 10-14 2
=) g10 5 200
10—16
%m 212 214 216 218 220 210 212 214 216 218 220 %m 212 214 216 218 220
w w w

Fig. 3: The results of the experiments of Subsection 5.3. The plot at top left gives the running time of
the method of this paper in the low-frequency regime. The top-middle plot gives reports the absolute
error in the solution of the boundary value problem for (5.6) in the low-frequency regime. The plot at
top right shows the total number of piecewise Chebyshev coefficients required to represent the slowly-
varying phase functions, again in the low-frequency regime. The plots on the bottom row provide the
same information, but in the high-frequency regime.

25 10 3.0
25
2.0 s
15 20
0 15
1.0
1.0
05 -5 05
0.0 0.0
-10
-10 ~05 0.0 05 1.0 -10 -05 0.0 05 1.0 -1.0 ~05 0.0 05 1.0
1e-5 200000
1 180000 —80000
160000 ~100000
0
140000 120000
_ 12
1 0000 ~140000
100000
-2 ~160000
80000
~180000
-10 ~05 0.0 05 1.0 -10 -05 00 05 1.0 10 -05 00 05 1.0

Fig. 4: The derivatives of the three slowly-varying phase functions produced by applying the method
of this paper to Equation (5.6) of Subsection 5.3 when the parameter w is equal to 2'6. Each column
corresponds to one of the phase functions, with the real part appearing in the first row and the
imaginary part in the second.

This manuscript is for review purposes only.

482
483
484
185
486
487
488
489
190
491
492

493
494

195

496

[SATINS) SG, BG, BN |
N NN NN
D T W N

16 A. MURDOCK AND J. BREMER

The results are given in Figure 3 while Figure 4 contains plots of the derivatives of the three slowly-
varying phase functions produced by applying the method of this paper to Equation (5.6) when
w = 216, As expected, the running time of the method of this paper increases until a certain fre-
quency threshold is passed, at which point it falls precipitously before becoming slowing decreasing.
The maximum observed absolute error in the solution grows consistently with w, which is as expected
considering that the condition number of the problem deteriorates with increasing frequency. For all
values of w greater than or equal to 22, less than 10 milliseconds was required to solve the bound-
ary value problem and fewer than 1,000 Chebyshev coefficients were needed to represent the phase
functions. No more than 60 milliseconds and 6,000 coefficients were required in the worst case. The
frequency €2 of the problems considered increased from approximately 3.9 when w = 1 to roughly
4,100,531 when w = 220,

5.4. An initial value problem for a fourth order equation. In this experiment, we
considered the linear scalar ordinary differential equation

y"" () +as(t)y" (1) + a2()y" (8) + a1 (£)y' () + qo(t)y(t) = 0 (5.10)

whose coefficient matrix has eigenvalues

t) w
Ai(t) = 3 +ietw, Aa(t) = 73

Formulas for the coefficients qg, g1, g2 and g3 are too unwieldy to reproduce here, but they can be

easily calculated from (5.11) using a computer algebra system. For each w = 29,21 ... 229 we used
the algorithm of this paper to solve (5.10) over the interval [—1, 1] subject to the conditions

y(0) =1, ¢(0)=iw, ¢"(0)=(iw)?> and y"(0)= (iw)®. (5.12)

+e, Ag(t) =cos(3t) and M(t)=—i (P +1)w. (511)

We measured the absolute error in each resulting solution at 10,000 equispaced points in the interval
[-1,1] via comparison with a reference solution constructed using the solver of Appendix A. The
results are given in Figure 5. We observe that for all w greater than or equal to 2°, fewer than 8
milliseconds was required to solve the problem and less than 250 piecewise Chebyshev coefficients
were required to represent the phase functions. In the worst case, when w = 25, the solver took
around 92 milliseconds and 3,200 piecewise Chebyshev coefficients were needed. The frequency (2
of the problems considered ranged from around 2.97 when w = 1 to approximately 3,067,403 when
w =220,

6. Conclusions. We have described a numerical algorithm for the solution of linear scalar
ordinary differential equations with slowly-varying coefficients whose running time is bounded inde-
pendent of frequency. It is competitive with cutting edge methods for second order equations, and
significantly faster than state-of-the-art methods for higher order equations. The key observation
underlying our algorithm is that the solutions of scalar linear ordinary differential equations can be
efficiently represented via phase functions. One of the main differences between our algorithm and
many alternative approaches is that, rather than trying to approximate phase functions with a series
expansion or an iterative process, we construct them by simply solving the Riccati equation numeri-
cally.

In the case of second order equations, the principles which underlie our solver have been rigorously
justified. However, we have not yet proved the analogous results for higher order scalar equations.
This is the subject of ongoing work by authors.

There are a number of obvious mechanisms for accelerating our algorithm. Perhaps the simplest
would be to replace the robust but fairly slow solver of Appendix A with a faster method. We could
also exploit the symmetries possessed by the solutions of the Riccati equation. For example, when
the coefficient ¢ in the second order equation (1.9) is real-valued, there is a pair of slowly-varying
phase functions v; and)y related by complex conjugation (i.e., ¢; = 1») and it is only necessary to

This manuscript is for review purposes only.

wt
o
J

O
DR = DS O ®

v Ov Ot Ot Ot Ot Ut Ut Ot Ut

DWW W W W
=~

~

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 17

100 1074 4000

— S 10-6 @
£ 10 £
) 80 = c
T ﬁ .g 3000
S 2 108 g
3 60 3 @
5 o o
= 8 10720 © 2000
€ < 3
£ 40 § 10-12 §
g 20 £ 31000
= s 10-4 S
055 2 4 3 8 10 10715 2 4 6 B 10 055 2 4 3] 10
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
w w w

10 107 400
— s -6 2
g8 51 5
< > £ 300
2 2 100 g
9] =
n 6] 8
= 410710 < 200
€ < z
g4 €10 5
o € 2
E 5 = 1 $ 100
= I 10~]

%m 212 214 216 218 220 10_16210 212 214 216 218 220 %m 212 214 216 218 220

w w w

Fig. 5: The results of the experiments of Subsection 5.4. The plot at top left gives the running time
of the algorithm of this paper in the low-frequency regime. The top-middle plot gives reports the
absolute error in the solution of the initial value problem for (5.10) in the low-frequency regime. The
plot at top right shows the total number of piecewise Chebyshev coefficients required to represent
the slowly-varying phase functions, again in the low-frequency regime. The plots on the bottom row
provide the same information, but in the high-frequency regime.

construct one of these phase functions.

The authors have also developed a “global” variant of the algorithm of this paper. Rather than
applying the Levin procedure only to calculate the values of r1,...,r, at a single point in the solution
domain, it uses it as the basis of an adaptive method for calculating r1, ..., r, over the entire solution
domain. This approach is generally faster than that of this paper in the event that all of the eigenvalues
A1(t), ..., An(t) of the coefficient matrix for (1.2) are of large magnitude. However, when one or more
of the eigenvalues is of small magnitude, the slowly-varying phase functions are nonunique and the
method runs into difficulties. A preliminary discussion of the global variant of our algorithm can be
found in [2]; a thorough description of it will be given by the authors at a later data. The authors also
plan to describe the generalization of the algorithm of [8] to equations of the form (1.1) and compare
it to the method of this paper and its global variant.

It is straightforward to generalize our method to the case of scalar differential equations which are
nondegenerate on an interval [a, b] except at a finite collection of turning points. This can be done by
applying the algorithm of this paper to a collection of subintervals of [a, b].

Finally, we note that because essentially any system of linear ordinary differential equations can be
transformed into a scalar equation (see, for instance, [22]), the algorithm of this paper can be used
to solve a large class of systems of linear ordinary differential equations in time bounded independent
of frequency. The preprint [12] introduces an algorithm based on this approach; that is, transforming
a system of linear ordinary differential equations into a scalar equation which is then solved via the
algorithm of this paper.

7. Acknowledgments. JB was supported in part by NSERC Discovery grant RGPIN-2021-
02613. We thank Fruzsina Agocs for directing us to the version of the algorithm of [1] designed to

This manuscript is for review purposes only.

549

ot Ut

ot

DS IR EES RS |

ot

o Ot Ot
9
O UL W N =

603
604

18

A. MURDOCK AND J. BREMER

solve Legendre’s equation used in the experiments of this paper.

8. Data availability statement. The datasets generated during and/or analysed during the

current study are available from the corresponding author on reasonable request.

24]
[25]

[26]

REFERENCES

Acocs, F. J., AND BARNETT, A. H. An adaptive spectral method for oscillatory second-order linear ODEs with
frequency-independent cost, arXiv:2212.06924, 2022.

AUBRY, M., AND BREMER, J. The Levin approach to the numerical calculation of phase functions,
arXiv:2308.03288, 2023.

AURENTZ, J., MAcCH, T., RoBOL, L., VANDERBRIL, R., AND WATKINS, D. S. Fast and backward stable computation
of roots of polynomials, part II: Backward error analysis; companion matrix and companion pencil. SIAM
Journal on Matriz Analysis and Applications 39 (2018), 1245-1269.

AURENTZ, J., MAcH, T., VANDERBRIL, R., AND WATKINS, D. S. Fast and backward stable computation of roots
of polynomials. SIAM Journal on Matriz Analysis and Applications 36 (2015), 942-973.

BLANES, S., Casas, F., AND Ros, J. Integrators based on the Magnus expansion. BIT Numerical Mathematics
40 (2000), 434-450.

BLANES, S., Casas, F., AND THALHAMMER, M. High-order commutator-free quasi-Magnus exponential integrators
for non-autonomous linear evolution equations. Computer Physics Communications 220 (2017), 243-262.
BREMER, J. On the numerical calculation of the roots of special functions satisfying second order ordinary

differential equations. SIAM Journal on Scientific Computing 39 (2017), A55-A82.

BREMER, J. On the numerical solution of second order differential equations in the high-frequency regime. Applied
and Computational Harmonic Analysis 44 (2018), 312-349.

BREMER, J. Phase function methods for second order linear ordinary differential equations with turning points.
Applied and Computational Harmonic Analysis 65 (2023), 137-169.

BREMER, J., AND ROKHLIN, V. Improved estimates for nonoscillatory phase functions. Discrete and Continuous
Dynamical Systems, Series A 36 (2016), 4101-4131.

CHEN, S., SERKH, K., AND BREMER, J. The adaptive Levin method. arXiv 2209.14561 (2022).

Hu, T., AND BREMER, J. A frequency-independent solver for systems of first order linear ordinary differential
equations, arXiv:2309.13848, 2023.

ISERLES, A. On the global error of discretization methods for highly-oscillatory ordinary differential equations.
BIT Numerical Mathematics 32 (2002), 561-599.

ISERLES, A., MARTHISEN, A., AND N@RSETT, S. On the implementation of the method of Magnus series for linear
differential equations. BIT Numerical Mathematics 39 (1999), 281-304.

ISERLES, A., AND N@RSETT, S. P. On the solution of linear differential equations in Lie groups. Philosophical
Transactions: Mathematical, Physical and Engineering Sciences 357, 1754 (1999), 983-1019.

KUMMER, E. De generali quadam aequatione differentiali tertti ordinis. Progr. Evang. Kéngil. Stadtgymnasium
Liegnitz (1834).

LEVIN, D. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscilla-
tions. Mathematics of Computation 38 (1982), 531-5538.

L1, J., WANG, X., AND WANG, T. A universal solution to one-dimensional oscillatory integrals. Science in China
Series F: Information Sciences 51 (2008), 1614-1622.

L1, J., Wang, X., WANG, T., AND X140, S. An improved Levin quadrature method for highly oscillatory integrals.
Applied Numerical Mathematics 60, 8 (2010), 833-842.

MaGNUS, W. On the exponential solution of differential equations for a linear operator. Communications on Pure
and Applied Mathematics 7 (1954), 649-673.

MILLER, P. D. Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island, 2006.

Put, M., AND SINGER, M. Galois Theory of Linear Differential Equations. Spinger Berlin, Heidelberg, 2003.

SPIGLER, R. Asymptotic-numerical approximations for highly oscillatory second-order differential equations by
the phase function method. Journal of Mathematical Analysis and Applications 463 (2018), 318-344.

SPIGLER, R., AND VIANELLO, M. A numerical method for evaluating the zeros of solutions of second-order linear
differential equations. Mathematics of Computation 55 (1990), 591-612.

SPIGLER, R., AND VIANELLO, M. The phase function method to solve second-order asymptotically polynomial
differential equations. Numerische Mathematik 121 (2012), 565-586.

Wasow, W. Asymptotic expansions for ordinary differential equations. Dover, 1965.

Appendix A. An adaptive spectral solver for ordinary differential equations.

In this appendix, we detail a standard adaptive spectral method for solving ordinary differential
equations. It is used by the algorithm of this paper, and also to calculate reference solutions in our

This manuscript is for review purposes only.

606

607
608
609
610
611
612
613

614
615
616
617
618
619

620
621

622

624
625
626
627
628
629

630

631

634

635
636
637
638

639
640

FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 19

numerical experiments. We describe its operation in the case of the initial value problem

{y’(t) =Ftyt), a<t<b,

(@) = v (A1)

where F : R™*! — C" is smooth and v € C". However, the solver can be easily modified to produce
a solution with a specified value at any point 5 in [a,b]. Moreover, by running the solver multiple
times, a basis in the space of solutions of a system of differential equations can be constructed and
used to solve boundary value problems as well.

The solver takes as input a positive integer k, a tolerance parameter €, an interval (a,b), the vector
v and a subroutine for evaluating the function F. It outputs n piecewise (k — 1)* order Chebyshev
expansions, one for each of the components y;(¢) of the solution y of (A.1).

The solver maintains two lists of subintervals of (a,b): one consisting of what we term “accepted
subintervals” and the other of subintervals which have yet to be processed. A subinterval is accepted
if the solution is deemed to be adequately represented by a (k — 1)%* order Chebyshev expansion on
that subinterval. Initially, the list of accepted subintervals is empty and the list of subintervals to
process contains the single interval (a,b). It then operates as follows until the list of subintervals to
process is empty:

1. Find, in the list of subinterval to process, the interval (¢, d) such that ¢ is as small as possible
and remove this subinterval from the list.
2. Solve the initial value problem
u'(t) = F(t,u(t)), c<t<d,
u(c) =w

(A.2)

If (¢,d) = (a,b), then we take w = v. Otherwise, the value of the solution at the point ¢ has
already been approximated, and we use that estimate for w in (A.2).

If the problem is linear, a straightforward Chebyshev integral equation method is used to solve
(A.2). Otherwise, the trapezoidal method is first used to produce an initial approximation
Yo of the solution and then Newton’s method is applied to refine it. The linearized problems
are solved using a Chebyshev integral equation method.

In any event, the result is a set of (k — 1)** order Chebyshev expansions

k—1
2 c+d .
Ui(t)%;/\i]‘ T} <d—ct+c—d>’ 1=1,...,n, (A.3)
which purportedly approximate the components uy, ..., u, of the solution of (A.2).

3. Compute the quantities
k—1 2
Ej:kﬂ |/\ij|

k_ b
Vi il

where the \;; are the coefficients in the expansions (A.3). If any of the resulting values is
larger than €, then we split the subinterval into two halves (c, CJQFd) and (C;d, d) and place
them on the list of subintervals to process. Otherwise, we place the subinterval (¢, d) on the

list of accepted subintervals.

i=1,...,n, (A.4)

At the conclusion of this procedure, we have (k — 1)%* order piecewise Chebyshev expansions for each
component of the solution, with the list of accepted subintervals determining the partition of [a, b].

This manuscript is for review purposes only.

	Introduction
	Slowly-varying phase functions for second order equations
	The Levin approach to solving nonlinear ordinary differential equations
	Numerical Algorithm
	The Levin procedure
	Construction of the phase functions.

	Numerical experiments
	Comparison with two specialized methods for second order equations
	Comparison with Magnus-type exponential integrators
	A boundary value problem for a third order equation
	An initial value problem for a fourth order equation

	Conclusions
	Acknowledgments
	Data availability statement
	References
	Appendix A. An adaptive spectral solver for ordinary differential equations

