
A SOLVER FOR LINEAR SCALAR ORDINARY DIFFERENTIAL EQUATIONS1

WHOSE RUNNING TIME IS BOUNDED INDEPENDENT OF FREQUENCY2

MURDOCK AUBRY∗ AND JAMES BREMER†3

Abstract. When the eigenvalues of the coefficient matrix for a linear scalar ordinary differential equation are of4
large magnitude, its solutions exhibit complicated behaviour, such as high-frequency oscillations, rapid growth or rapid5
decay. The cost of representing such solutions using standard techniques grows with the magnitudes of the eigenvalues.6
As a consequence, the running times of most solvers for ordinary differential equations also grow with these eigenvalues.7
However, a large class of scalar ordinary differential equations with slowly-varying coefficients admit slowly-varying8
phase functions that can be represented at a cost which is bounded independent of the magnitudes of the eigenvalues9
of the corresponding coefficient matrix. Here, we introduce a numerical algorithm for constructing slowly-varying10
phase functions which represent the solutions of a linear scalar ordinary differential equation. Our method’s running11
time depends on the complexity of the equation’s coefficients, but is bounded independent of the magnitudes of the12
equation’s eigenvalues. Once the phase functions have been constructed, essentially any reasonable initial or boundary13
value problem for the scalar equation can be easily solved. We present the results of numerical experiments showing that,14
despite its greater generality, our algorithm is competitive with state-of-the-art methods for solving highly-oscillatory15
second order differential equations. We also compare our method with Magnus-type exponential integrators and find16
that our approach is orders of magnitude faster in the high-frequency regime.17

1. Introduction. The complexity of the solutions of an nth order linear homogeneous ordinary18

differential equation19

y(n)(t) + qn−1(t)y
(n−1)(t) + · · ·+ q1(t)y

′(t) + q0(t)y(t) = 0 (1.1)20

increases with the magnitudes of the eigenvalues λ1(t), . . . , λn(t) of the coefficient matrix21 

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

−q0(t) −q1(t) −q2(t) · · · −qn−2(t) −qn−1(t)


(1.2)22

obtained from (1.1) in the usual way. Indeed, the cost to represent such solutions over an interval23

[a, b] using standard techniques (e.g., polynomial or trigonometric expansions) typically grows roughly24

linearly with the quantity25

Ω = max
i=1,...,n

∫ b

a

|λi(t)| dt, (1.3)26

which we refer to as the frequency of (1.1). We use this terminology because, in most cases of interest,27

it is the imaginary parts of the eigenvalues which are of large magnitude. Indeed, when the real part28

of one or more of the λj(t) is large in size, most initial and terminal value problems for (1.1) are highly29

ill-conditioned and solving them numerically requires specialized techniques which exploit additional30

information about the desired solution.31

Although the complexity of the solutions of (1.1) increases with frequency, a large class of linear scalar32

ordinary differential equations admit phase functions whose cost to represent via standard techniques33

is bounded independent of the magnitudes of the eigenvalues of (1.2). In fact, if q0, . . . , qn−1 are slowly-34

varying on an interval I and the differential equation (1.1) is nondegenerate there — meaning that35

the eigenvalues λ1(t), . . . , λn(t) are distinct for each t ∈ I — then it is possible to find slowly-varying36
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2 A. MURDOCK AND J. BREMER

phase functions ψ1, . . . , ψn : I → C such that37

{exp (ψj(t)) : j = 1, . . . , n} (1.4)38

is a basis for the space of solutions of (1.1) given on the interval I. That slowly-varying phase39

functions exist under these conditions, at least in an asymptotic sense, has long been known. Indeed,40

this observation is the basis of the WKB method and other related techniques (see, for instance, [21],41

[26] and [25, 23, 24]). A theorem which establishes the existence of slowly-varying phase functions42

for second order differential equations under mild conditions on their coefficients is proven in [10].43

Although it is not immediately obvious how to generalize the argument of [10] to higher order scalar44

equations, known results regarding the asymptotic approximation of solutions of differential equations45

and numerical evidence (including the experiments of this paper) strongly suggest the situation for46

higher order scalar equations is much the same as it is for second order equations.47

The derivatives of the phase functions ψ1, . . . , ψn, which we denote by r1, . . . , rn, satisfy an (n− 1)st48

order nonlinear inhomogeneous ordinary differential equation, the general form of which is quite49

complicated. When n = 2, it is the Riccati equation50

r′(t) + (r(t))2 + q1(t)r(t) + q0(t) = 0; (1.5)51

when n = 3, the nonlinear equation is52

r′′(t) + 3r′(t)r(t) + (r(t))3 + q2(t)r
′(t) + q2(t)(r(t))

2 + q1(t)r(t) + q0(t) = 0; (1.6)53

and, for n = 4, we have54

r′′′(t) + 4r′′(t)r(t) + 3(r′(t))2 + 6r′(t)(r(t))2 + (r(t))4 + q3(t)(r(t))
3 + q3(t)r

′′(t)

+ 3q3(t)r
′(t)r(t) + q2(t)(r(t))

2 + q2(t)r
′(t) + q1(t)r(t) + q0(t) = 0.

(1.7)55

By a slight abuse of terminology, we will refer to the (n − 1)st order nonlinear equation obtained by56

inserting the representation57

y(t) = exp

(∫
r(t) dt

)
(1.8)58

into (1.1) as the (n− 1)st order Riccati equation, or, alternatively, the Riccati equation for (1.1).59

An obvious approach to initial and boundary value boundary problems for (1.1) calls for constructing a60

suitable collection of slowly-varying phase functions by solving the corresponding Riccati equation nu-61

merically. Doing so is not as straightforward as it sounds, however. The principal difficulty is that most62

solutions of the Riccati equation for (1.1) are rapidly-varying when the eigenvalues λ1(t), . . . , λn(t)63

are of large magnitude, and some mechanism is needed to select the slowly-varying solutions.64

The article [8] introduces an algorithm for constructing two slowly-varying phase function ψ1 and ψ265

such that exp(ψ1(t)) and exp(ψ2(t)) constitute a basis in the space of solutions of a second order linear66

ordinary differential equation of the form67

y′′(t) + q(t)y(t) = 0, a < t < b, (1.9)68

where q is slowly-varying and non-vanishing on (a, b). It operates by constructing a smoothly deformed69

version of the coefficient q which is equal to an appropriately chosen constant in a neighborhood of70

some point c in (a, b) and coincides with the original coefficient q in a neighborhood of a point d in71

(a, b). There is a pair of slowly-varying phase functions for the deformed equation whose derivatives at72

c are known and whose derivatives at d coincide with the derivatives of a pair of slowly-varying phase73

functions for the original equation. Consequently, by solving the Riccati equation corresponding to74

the deformed equation with initial conditions specified at c, the values of the derivatives of a pair75

of slowly-varying phase functions for the original equation at the point d can be calculated. Once76

this has been done, the Riccati equation corresponding to the original equation is solved using the77
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FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 3

values at d as initial conditions in order to calculate the derivatives of a pair of slowly-varying phase78

functions for (1.9) over the whole interval. The desired slowly-varying phase functions ψ1 and ψ2 are79

obtained by integration. The cost of the entire procedure is bounded independent of the magnitude80

of q, which is related to the eigenvalues of the coefficient matrix corresponding to (1.9) via81

λ1(t) =
√

−q(t) and λ2(t) = −
√
−q(t). (1.10)82

From (1.10), it follows that the assumption that q is non-vanishing on (a, b) is equivalent to the83

condition that (1.9) is nondegenerate on (a, b). In [9], the method of [8] is extended to the case in84

which (1.9) is nondegenerate on an interval [a, b] except at a finite number of turning points. The85

equation (1.1) has a turning point at t0 provided the eigenvalues λ1(t), . . . , λn(t) of (1.2) are distinct86

in a deleted neighborhood of t0, but coalesce at t0. The turning points of (1.9), then, are precisely the87

isolated zeros of q. Because slowly-varying phase functions need not extend across turning points, the88

algorithm of [9] introduces a partition a = ξ1 < ξ2 < . . . < ξk = b of [a, b] such that ξ2, . . . , ξk−1 are89

the roots of q in the open interval (a, b). It then applies a variant of the method of [8] to each of the90

subintervals [ξj , ξj+1], j = 1, . . . , k − 1, which results in a collection of 2(k − 1) slowly-varying phase91

functions that efficiently represent the solutions of (1.9).92

It is relatively straightforward to generalize the approach of [8] to the case of nondegenerate higher93

order scalar equations. However, while the resulting algorithm is highly-effective for a large class of94

equations of the form (1.1), the authors have found another approach inspired by the classical Levin95

method for evaluating oscillatory integrals to be somewhat more robust. Introduced in [17], the Levin96

method is based on the observation that if p0 and f are slowly varying, then the inhomogeneous97

equation98

y′(t) + p0(t)y(t) = f(t) (1.11)99

has a slowly-varying solution y0, regardless of the magnitude of p0. Similarly to the case of phase100

functions, the proofs appearing in [17] and subsequent works on the Levin method do not immediately101

apply to the case of higher order scalar equations, but experimental evidence and results for special102

cases strongly suggest that the Levin principle generalizes. That is to say, equations of the form103

y(n)(t) + pn−1(t)y
(n−1)(t) + · · ·+ p1(t)y

′(t) + p0(t)y(t) = f(t). (1.12)104

admit solutions whose complexity depends on that of the right-hand side f and of the coefficients105

p0, . . . , pn−1, but is bounded independent of the magnitudes of p0, . . . , pn−1.106

The algorithm of this paper exploits the existence of slowly-varying phase functions and the Levin107

principle to solve initial and boundary value problems for nondegenerate scalar equations of the form108

(1.1) with slowly-varying coefficients. It operates by constructing slowly-varying phase functions109

ψ1 . . . , ψn such that (1.4) is a basis in the space of solutions of a nondegenerate scalar equation. Once110

this has been done, any reasonable initial or boundary value problem for (1.1) can be solved more-111

or-less instantaneously. As with [8], the method of this paper can be extended to the case of a scalar112

equation which is nondegenerate on an interval [a, b] except at a finite number of turning points by113

applying it on a collection of subintervals of [a, b]; however, for the sake of simplicity, we consider only114

nondegenerate equations here.115

The algorithms of [8], [9] and this article bear some superficial similarities to Magnus expansion116

methods. Introduced in [20], Magnus expansions are certain series of the form117

∞∑
k=1

Ωk(t) (1.13)118

such that exp (
∑∞

k=1 Ωk(t)) locally represents a fundamental matrix for a system of differential equa-119
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4 A. MURDOCK AND J. BREMER

tions120

y′(t) = A(t)y(t). (1.14)121

The first few terms for the series around t = 0 are given by122

Ω1(t) =

∫ t

0

A(s) ds,

Ω2(t) =
1

2

∫ t

0

∫ t1

0

[A(t1), A(t2)] dt2dt1 and

Ω3(t) =
1

6

∫ t

0

∫ t1

0

∫ t2

0

[A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]] dt3dt2dt1.

(1.15)123

The straightforward evaluation of the Ωj is nightmarishly expensive; however, a clever technique which124

renders the calculations manageable is introduced in [15] and it paved the way for the development of125

a class of numerical solvers which represent a fundamental matrix for (1.14) over an interval I via a126

collection of truncated Magnus expansions. While the entries of the Ωj are slowly-varying whenever127

the entries of A(t) are slowly-varying, the radius of convergence of the series in (1.13) depends on the128

magnitude of the coefficient matrix A(t), which is, in turn, related to the magnitudes of the eigenvalues129

of A(t). Of course, this means that the number of Magnus expansions which are needed to solve a130

given problem, and hence the cost of the method, grows with the magnitudes of the eigenvalues of131

A(t). See, for instance, [13], which gives for estimates of the growth in the running time of Magnus132

expansion methods in the case of an equation of the form (1.9) as a function of the magnitude of the133

coefficient q.134

Nonetheless, Magnus expansion methods are much more efficient than standard solvers for ordinary135

differential equations in the high-frequency regime. Indeed, exponential integrators which approximate136

Magnus expansions while avoiding the explicit calculation of commutators (those discussed in [6], for137

instance) appear to be the current state-of-the-art approach to solving scalar ordinary differential138

equations of order three or higher. In our experiments, we compare our method against 4th and 6th139

order “classical” Magnus methods which explicitly make use of commutators, as well as 4th and 6th140

order commutator-free quasi-Magnus exponential integrators. Since the running time of our algorithm141

is largely independent of frequency, our method is orders of magnitude faster than Magnus-type142

methods in the high-frequency regime. Perhaps surprisingly, we find that it is also faster even at quite143

low frequencies. We note, though, that Magnus expansion methods are more general than our method144

in that they apply to systems of linear ordinary differential equations and not just scalar equations.145

Our experiment comparing our approach with Magnus-type methods is described in Subsection 5.2.146

We also compare our method with two specialized algorithms for second order equations: the smooth147

deformation method of [8] (which was developed by one of the authors of this paper) and the ARDC148

method of [1]. These represent current state-of-the-art approaches to solving second order equations149

in the high-frequency regime. In the comparison made in Subsection 5.1, we find that, despite its150

much greater generality, the algorithm of this paper is only slightly slower than that of [8] and it is151

as much as 15 times faster than the ARDC method of [1].152

The remainder of this article is organized as follows. In Section 2, we discuss the results of [10] per-153

taining to the existence of slowly-varying phase functions for second order linear ordinary differential154

equations. Section 3 describes how the Levin principle can be exploited to compute these slowly-155

varying phase functions. In Section 4, we detail our numerical algorithm. The results of numerical156

experiments demonstrating the properties of our algorithm are discussed in Section 5. These exper-157

iments include comparisons with state-of-the-art methods for the special case of second order linear158

ordinary differential equations and with Magnus-type exponential integrators. We briefly comment159

on the algorithm of this article and directions for future work in Section 6. Appendix A details a160

standard adaptive spectral solver for ordinary differential equations which is used by our algorithm161
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FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 5

and to construct reference solutions in our numerical experiments.162

2. Slowly-varying phase functions for second order equations. Here, we briefly discuss163

the results of [10], which pertain to second order equations of the form164

y′′(t) + ω2q0(t)y(t) = 0, a < t < b, (2.1)165

with q0 smooth and positive. Under these assumptions, the solutions of (2.1) are oscillatory, with166

the frequency of their oscillations controlled by the parameter ω. Analogous results hold when q0 is167

negative and the solutions of (2.1) are combinations of rapidly increasing and decreasing functions. It is168

not obvious, however, how to apply the argument of [10] to higher order scalar equations. Nonetheless,169

there are strong indications, including relevant well-known results in asymptotic analysis (see, for170

instance, [26]) and experimental evidence, that the situation for higher order scalar equations is171

similar.172

If y(t) = exp(ψ(t)) satisfies (2.1), then it can be trivially verified that ψ solves the Riccati equation173

ψ′′(t) + (ψ′(t))
2
+ ω2q0(t) = 0. (2.2)174

By inserting the expression ψ(t) = iα(t) + β(t) into (2.2), we see that if α and β satisfy the system of175

equations176 {
β′′(t) + (β′(t))2 − (α′(t))2 + ω2q0(t) = 0

α′′(t) + 2α′(t)β′(t) = 0,
(2.3)177

then ψ solves (2.2). The second equation in (2.3) admits the formal solution178

β(t) = −1

2
log(α′(t)), (2.4)179

so that ψ can be written in the form180

ψ(t) = iα(t)− 1

2
log (α′(t)) . (2.5)181

Because of the close relationship between α and ψ, both are referred to as phase functions for (2.1).182

Moreover, a bound on the complexity of one readily gives a bound on the complexity of the other.183

Inserting (2.4) into the first equation in (2.3) yields184

ω2q0(t)− (α′(t))2 +
3

4

(
α′′(t)

α′(t)

)2

− 1

2

α′′′(t)

α′(t)
= 0. (2.6)185

Equation (2.6) is known as Kummer’s equation, after E. E. Kummer, who studied it in [16]. The186

theorem of [10] applies when the function p(x) = p̃(t(x)), where p̃(t) is defined via187

p̃(t) =
1

ω2q0(t)

(
5

4

(
q′0(t)

q0(t)

)2

− q′′0 (t)

q0(t)

)
(2.7)188

and t(x) is the inverse function of189

x(t) =

∫ t

a

√
q0(s) ds, (2.8)190

has a rapidly decaying Fourier transform. More explicitly, the theorem asserts that if the Fourier191

transform of p satisfies a bound of the form192

|p̂(ξ)| ≤ Γ exp (−µ |ξ|) , (2.9)193

This manuscript is for review purposes only.



6 A. MURDOCK AND J. BREMER

then there exist functions ν and δ such that194

|ν(t)| ≤ Γ

2µ

(
1 +

4Γ

ω

)
exp(−µω), (2.10)195

196 ∣∣∣δ̂(ξ)∣∣∣ ≤ Γ

ω2

(
1 +

2Γ

ω

)
exp(−µ|ξ|) (2.11)197

and198

α(t) = ω
√
q0(t)

∫ t

a

exp

(
δ(u)

2

)
du (2.12)199

is a phase function for200

y′′(t) + ω2

(
q0(t) +

ν(t)

4ω2

)
y(t) = 0. (2.13)201

Because the magnitude of ν decays exponentially fast in ω, Equation (2.13) is identical to (2.1) for202

the purposes of numerical computation when ω is of even very modest size. The definition of the203

function p(x) is ostensibly quite complicated; however, p(x) is, in fact, simply a constant multiple of204

Schwarzian derivative of the inverse function t(x) of (2.8).205

This result ensures that for all values of ω, (2.1) admits a phase function which is slowly-varying.206

In the low-frequency regime, when ω is small, it can be the case that all phase functions for (2.1)207

oscillate, but they do so at low frequencies because ω is small. Once ω becomes sufficiently large,208

the function ν is vanishingly small, and the phase function associated with (2.13) is, at least for the209

purposes of numerical computation, a slowly-varying phase function for the original equation (2.1).210

Since ν decays exponentially fast in ω, this happens at extremely modest frequencies.211

Because of this phenomenon, in the low-frequency regime, the running time of numerical algorithms212

based on phase functions tend to grow with frequency. However, once a certain frequency threshold213

is reached, the complexity of the phase functions becomes essentially independent of frequency, or214

even slowly decreasing with frequency. This phenomenon can be clearly seen in all of the numerical215

experiments of this paper presented in Section 5.216

3. The Levin approach to solving nonlinear ordinary differential equations. In217

its original application to oscillatory integrals, Levin’s principle was used to construct slowly-varying218

solutions to inhomogeneous linear ordinary differential equations. However, it can also be exploited to219

construct slowly-varying solutions of nonlinear ordinary differential equations, specifically the (n−1)st220

order Riccati equation.221

When Newton’s method is applied to the (n− 1)st order Riccati equation corresponding to (1.1), the222

result is a sequence of linearized equations of the form223

y(n−1)(t) + pn−2(t)y
(n−2)(t) + · · ·+ p1(t)y

′(t) + p0(t)y(t) = f(t). (3.1)224

Assuming the coefficients q0, . . . , qn−1 and the the initial guess used to initiate the Newton procedure225

are slowly-varying, the coefficients p0, . . . , pn−2 and the right-hand side f appearing in the first lin-226

earized equation of the form (3.1) which arises will also be slowly-varying. According to the Levin227

principle that equation admits slowly-varying solutions. If such a solution is used to update the initial228

guess, then the second Newton iterate will also be slowly-varying and the second linear inhomoge-229

neous equation which arises will have slowly-varying coefficients and a slowly-varying right-hand side.230

Continuing in this fashion results in a series of linearized equations of the form (1.12), all of which231

have slowly-varying coefficients and slowly-varying right-hand sides. Consequently, a slowly-varying232

solution of the Riccati equation can be constructed via Newton’s method as long as an appropriate233

slowly-varying initial guess is known.234
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FREQUENCY-INDEPENDENT SCALAR ODE SOLVER 7

Conveniently enough, there is an obvious mechanism for generating n slowly-varying initial guesses235

for the (n − 1)st order Riccati equation. In particular, the eigenvalues λ1(t), . . . , λn(t) of the matrix236

(1.2), which are often used as low-accuracy approximations of solutions of the Riccati equation in237

asymptotic methods, are suitable as initial guesses for the Newton procedure.238

Complicating matters slightly is the fact that the differential operator239

D [y] (t) = y(n−1)(t) + pn−2(t)y
(n−2)(t) + · · ·+ p1(t)y

′(y) + p0(t)y(t) (3.2)240

appearing on the left-hand side of (3.1) admits a nontrivial nullspace which can contain rapidly-varying241

functions when one or more of the pj is of large magnitude. It is a central observation of Levin-type242

methods, however, that when (3.1) admits slowly-varying solutions along with rapidly-varying ones,243

a slowly-varying solution can be accurately and rapidly computed provided some case is taken. In244

particular, as long as one uses a Chebyshev spectral collocation scheme which is sufficient to resolve245

the coefficients p0, . . . , pn−1 as well as the right-hand side f and the resulting linear system is solved via246

a truncated singular value decomposition, a high-accuracy approximation of a slowly-varying solution247

of (3.1) is obtained. Critically, the discretization need not be sufficient to resolve the rapidly-varying248

solutions of (3.1) so that the cost of solving the equation depends only on the complexity of the desired249

slowly-varying solution, rather than on the complexity of the rapidly-varying elements of the nullspace250

of (3.2). Numerical evidence to this effect in the case n = 2 is provided in [18] and [19], and a detailed251

analysis is given in [11].252

4. Numerical Algorithm. In this section, we describe our method for the construction of253

a collection of slowly-varying phase functions ψ1, . . . , ψn such that (1.4) is a basis in the space of254

solutions of a nondegenerate equation of the form (1.1) with slowly-varying coefficients. Once these255

phase functions have been constructed, any reasonable initial or boundary value problem for (1.1) can256

be easily solved. Recall that we use r1, . . . , rn to denote the first derivatives of the phase functions257

ψ1, . . . , ψn.258

The algorithm operates in two stages, each of which is detailed in a subsection below. In the first259

stage, the Levin principle is used to find the values of r1, . . . , rn and their derivatives up to order260

(n − 2) at a point in the solution domain of the scalar equation. In the second stage, the Riccati261

equation corresponding to (1.1) is solved using these values as initial conditions in order to calculate262

r1, . . . , rn and their derivatives through order (n − 2) over the entire solution interval and the phase263

functions ψ1, . . . , ψn are obtained by integrating r1, . . . , rn.264

Our algorithm takes as input the following:265

1. the interval [a, b] over which the equation is given;266

2. an external subroutine for evaluating the coefficients q0, . . . , qn−1 in (1.1);267

3. a subinterval [a0, b0] of [a, b] over which the Levin procedure is to be applied and a point σ in268

that interval;269

4. a point η on the interval [a, b] and the desired values ψ1(η), . . . , ψn(η) for the phase functions270

at that point;271

5. an integer k which controls the order of the piecewise Chebyshev expansions used to represent272

the phase functions and their derivatives; and273

6. a parameter ϵ which specifies the desired accuracy for the solutions of the Riccati equation274

computed in the second stage of the algorithm.275

The output of our algorithm comprises n2 piecewise Chebyshev expansions of order (k−1), representing276

the phase functions ψ1, . . . , ψn and their derivatives through order (n− 1). To be entirely clear, by a277
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8 A. MURDOCK AND J. BREMER

(k − 1)st order piecewise Chebyshev expansions on the interval [a, b], we mean a sum of the form278

m−1∑
i=1

χ[xi−1,xi)(t)

k−1∑
j=0

λij Tj

(
2

xi − xi−1
t+

xi + xi−1

xi − xi−1

)

+χ[xm−1,xm](t)

k−1∑
j=0

λmj Tj

(
2

xm − xm−1
t+

xm + xm−1

xm − xm−1

)
,

(4.1)279

where a = x0 < x1 < · · · < xm = b is a partition of [a, b], χI is the characteristic function on the280

interval I and Tj is the Chebyshev polynomial of degree j. We note that the terms appearing in the281

first line of (4.1) involve the characteristic function of a half-open interval, while that appearing in the282

second involves the characteristic function of a closed interval. This ensures that exactly one term in283

(4.1) is nonzero for each point t in [a, b].284

4.1. The Levin procedure. In this first stage of the algorithm, the values of r1, . . . , rn and285

their derivatives through order (n − 2) at the point σ in the subinterval [a0, b0] are calculated. It286

proceeds as follows:287

1. Construct the k-point extremal Chebyshev grid t1, . . . , tk on the interval [a0, b0] and the288

corresponding k×k Chebyshev spectral differentiation matrix D. The nodes are given by the289

formula290

tj =
b0 − a0

2
cos

(
π
n− j

n− 1

)
+
b0 + a0

2
. (4.2)291

The matrix D takes the vector of values292 
f(t1)
f(t2)
...

f(tk)

 (4.3)293

of a Chebyshev expansion of the form294

f(t) =

k−1∑
j=0

pjTj

(
2

b0 − a0
t+

b0 + a0
b0 − a0

)
(4.4)295

to the vector296 
f ′(t1)
f ′(t2)

...
f ′(tk)

 (4.5)297

of the values of its derivatives at the nodes t1, . . . , tj .298

2. Evaluate the coefficients q0, . . . , qn−1 at the points t1, . . . , tk by calling the external subroutine299

supplied by the user.300

3. Calculate the values of n initial guesses r1, . . . , rn for the Newton procedure at the nodes301
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t1, . . . , tk by first computing the eigenvalues of the coefficient matrices302

Aj =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

−q0(tj) −q1(tj) −q2(tj) · · · −qn−2(tj) −qn−1(tj)


(4.6)303

for j = 1, . . . , k. More explicitly, the eigenvalues of Aj give the values of r1(tj), . . . , rn(tj). The304

values of the first (n− 2) derivatives of r1, . . . , rn at the nodes t1, . . . , tk are then calculated305

through repeated application of the spectral differentiation matrix D.306

4. Perform Newton iterations in order to refine each of the initial guesses r1, . . . , rn. Because the307

general form of the Riccati equation is quite complicated, we illustrate the procedure when308

n = 2, in which case the Riccati equation is309

r′(t) + (r(t))2 + q1(t)r(t) + q0(t) = 0. (4.7)310

In each iteration, we perform the following steps:311

(a) Compute the residual312

ξ(t) = r′(t) + (r(t))2 + q1(t)r(t) + q0(t) (4.8)313

of the current guess at the nodes t1, . . . , tk.314

(b) Form a spectral discretization of the linearized operator315

L [δ] (t) = δ′(t) + 2r(t)δ(t) + q1(t)δ(t). (4.9)316

That is, form the k × k matrix317

B = D +


2r(t1) + q1(t1)

2r(t2) + q1(t2)
. . .

2r(tk) + q1(tk)

 . (4.10)318

(c) Solve the k × k linear system319

B


δ(t1)
δ(t2)
...

δ(tk)

 = −


ξ(t1)
ξ(t2)
...

ξ(tk)

 (4.11)320

and update the current guess:321 
r(t1)
r(t2)
...

r(tk)

 =


r(t1)
r(t2)
...

r(tk)

+


δ(t1)
δ(t2)
...

δ(tk)

 . (4.12)322

We perform a maximum of 8 Newton iterations and the procedure is terminated if the value323

of324

max
j=1,...,k

|δ(tj)| (4.13)325
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is smaller than326

100ϵ0 , max
j=1,...,k

|r(tj)| , (4.14)327

where ϵ0 ≈ 2.220446049250313 × 10−16 denotes machine zero for the IEEE double precision328

number system.329

5. We use Chebyshev interpolation to evaluate r1, . . . , rn, and their derivatives of orders through330

(n− 2) at the point σ ∈ [a0, b0]. These are the outputs of this stage of the algorithm.331

Standard eigensolvers often produce inaccurate results in the case of matrices of the form (4.6),332

particularly when the entries are of large magnitude. Fortunately, there are specialized techniques333

available for companion matrices, and the matrices appearing in (4.6) are simply the transposes of334

such matrices. Our implementation of the procedure of this subsection uses the backward stable and335

highly-accurate technique of [4, 3] to compute the eigenvalues of the matrices (4.6).336

Care must also be taken when solving the linear system (4.11) since the associated operator has a337

nontrivial nullspace. Most of the time, the discretization being used is insufficient to resolve any part of338

that nullspace, with the consequence that the matrix B is well-conditioned. However, when elements339

of the nullspace are sufficiently slowly-varying, they can be captured by the discretization, in which340

case the matrix B will have small singular values. Fortunately, it is known that this does not cause341

numerical difficulties in the solution of (4.11), provided a truncated singular value decomposition is342

used to invert the system. Experimental evidence to this effect was presented in [18, 19] and a careful343

analysis of the phenomenon appears in [11]. Because the truncated singular value decomposition is344

quite expensive, we actually use a rank-revealing QR decomposition to solve the linear system (4.11)345

in our implementation of the procedure of this subsection. This was found to be about five times346

faster, and it lead to no apparent loss in accuracy.347

Rather than computing the eigenvalues of each of the matrices (4.6) in order to construct initial guesses348

for the Newton procedure, one could accelerate the algorithm slightly by computing the eigenvalues of349

only one Aj and use the constant functions r1(t) = λ1(tj), . . . , r(t) = λn(tj) as initial guesses instead.350

We did not make use of this optimization in our implementation of the algorithm of this paper.351

4.2. Construction of the phase functions.. Next, for each j = 1, . . . , n, the Riccati352

equation is solved using the value of rj(σ) to specify the desired solution. These calculations are353

performed via the adaptive spectral method described in Appendix A. The parameters k and ϵ are354

passed to that procedure. Since most solutions of the Riccati equation are rapidly-varying and we355

are seeking a slowly-varying solution, these problems are extremely stiff. The solver of Appendix A is356

well-adapted to such problems; however, essentially any solver for stiff ordinary differential equations357

would serve in its place. The result is a collection of n2 − n piecewise Chebyshev expansions of order358

(k − 1) representing the derivatives of the phase functions ψ1, . . . , ψn of orders 1 through (n − 1).359

Finally, spectral integration is used to construct n additional piecewise Chebyshev expansions which360

represent the phase functions ψ1, . . . , ψn themselves. The particular antiderivatives are determined361

by the values ψ1(η), . . . , ψn(η) specified as inputs to the algorithm.362

5. Numerical experiments. In this section, we present the results of numerical experiments363

which were conducted to illustrate the properties of the method of this paper. We implemented364

our algorithm in Fortran and compiled our code with version 13.2.1 of the GNU Fortran compiler.365

All experiments were performed on a single core of a workstation computer equipped with an AMD366

3995WX processor and 256GB of RAM. No attempt was made to parallelize our code. The large367

amount of RAM was needed to calculate reference solutions using a standard ODE solver.368

Our algorithm calls for computing the eigenvalues of matrices of the form (1.2). Unfortunately,369

standard eigensolvers lose significant accuracy when applied to many matrices of this type. However,370

because the transpose of (1.2) is a companion matrix, we were able to use the highly-accurate and371
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backward stable algorithm of [4, 3] for computing the eigenvalues of companion matrices to perform372

these calculations.373

In all of our experiments, the value of the parameter k, which determines the order of the Chebyshev ex-374

pansions used to represent phase functions was taken to be 16, the particular antiderivatives ψ1, . . . , ψn375

of the functions r1, . . . , rn were chosen through the requirement that ψ1(0) = ψ2(0) = · · · = ψn(0) = 0376

and the Levin procedure was performed on the subinterval [0.0, 0.1]. The parameter ϵ which controls377

the accuracy of the obtained phase functions was taken to be 10−12.378

We tested the accuracy of the method of this paper by using it to calculate solutions to initial379

and boundary value problems for scalar equations and comparing the results to reference solutions380

constructed via the standard adaptive spectral method described in Appendix A. Because the condition381

numbers of these initial and boundary value problems for (1.1) grow with frequency, the accuracy of382

any numerical method used to solve them is expected to deteriorate with increasing frequency. In383

the case of our algorithm, the phase functions themselves are calculated to high precision, but their384

magnitudes increase with frequency and accuracy is lost when the phase functions are exponentiated.385

One implication is of this is that calculations which involve only the phase functions and not the386

solutions of the scalar equation can be performed to high accuracy. The article [7], for example,387

describes a scheme of this type for rapidly computing the zeros of solutions of second order linear388

ordinary differential equations to extremely high accuracy.389

To account for the vagaries of modern computing environments, all reported times were obtained by390

averaging the cost of each calculation over either 1,000 runs.391

5.1. Comparison with two specialized methods for second order equations. We392

first compared the performance of the Levin-type method of this paper with the smooth deformation393

scheme of [8] developed by one of this paper’s authors, and with the ARDC method of [1].394

For each ν = 20, 21, 22, . . . , 220 and each of the three methods considered, we solved Legendre’s395

differential equation396

(1− t2)y′′(t)− 2ty′(t) + ν(ν + 1)y(t) = 0 (5.1)397

in order to obtain the Legendre polynomial Pν of degree ν over the interval [0.0, 0.999]. The algorithm398

of [1] makes it somewhat difficult to evaluate solutions at arbitrary points inside the solution domain,399

so we settled for measuring the error in each obtained solution by comparing its value at t = 0.999400

against the known value of Pν(0.999).401

We used the implementation of the method of [8] available at:402

https://github.com/JamesCBremerJr/Phase-functions403

We used an implementation of the ARDC method designed specifically for solving Legendre’s differ-404

ential equation which was suggested to us by one of the authors of [1]. It is available at:405

https://github.com/fruzsinaagocs/riccati/tree/legendre-improvements406

The more general implementation of the ARDC method used in the experiments of [1], which does407

not perform as well in this experiment, can be found at:408

https://github.com/fruzsinaagocs/riccati409

The input parameters for the algorithms of [8] and [1] were set as follows. For the method of [8], we set410

the parameter k controlling the order of the piecewise Chebyshev expansions used to represent phase411

functions to be 16, and took the parameter ϵ specifying the desired accuracy for the phase functions412

to be 10−12. For [1], we used the default parameters provided by the authors’ code.413

Figure 1 presents the results of this experiment. We observe that the method of this paper achieves414
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Fig. 1: The results of the experiment of Subsection 5.1 in which the Levin-type method of this paper,
the smooth deformation scheme of [8] and the ARDC method of [1] are compared. The left-most plot
gives the time required by each algorithm as a function of ν, but only for the low-frequency regime.
The middle plot gives the time required by each algorithm in the high-frequency regime. The plot on
the right shows the absolute error in the value of the Legendre Pν(0.999) obtained by each algorithm
as a function of ν.

similar accuracy to that of [8], but is a bit slower. Although [1] claims that ARDC achieves a ten415

times speed improvement over the method of [8], we have not found this to be the case. At frequencies416

below 29, the ARDC method is both noticeably slower and less accurate than both the other methods.417

For example, when ν = 28, the algorithm of this paper takes around 1.8 milliseconds and achieves 13418

digits of accuracy, that of [8] takes approximately 0.81 milliseconds and achieves 15 digits of accuracy419

while the ARDC method takes more than 30 milliseconds and obtains only 11 digits of accuracy. In420

particular, ARDC can be as much as 15 times slower than the method of this paper and 30 times421

slower than the algorithm of [8]. At higher frequencies, ARDC achieves similar levels of accuracy to422

[8] and the method of this paper, but it is more than a factor of two slower than the algorithm of423

this paper and more than a factor of three slower than the method of [8]. The discrepancy between424

results reported in [1] and the results of this experiment appears to be attributable to the use of an425

unoptimized, highly inefficient implementation of [8] in the experiments of [1].426

As explained in Section 2, in the low-frequency regime, the running times of all three methods increase427

with ω. However, once a certain frequency threshold is reached, the running times decrease rapidly428

and then become essentially independent of frequency, or even continue to decrease slowly as functions429

of ω. We note that, in our plots, this phenomenon is more apparent in the case of the ARDC method430

because of the much greater cost of that algorithm in the low-frequency regime.431

5.2. Comparison with Magnus-type exponential integrators. In our second experiment,432

we compared the performance of our algorithm with that of four methods based on Magnus-type433

exponential integrators. We use MG4 to refer to the 4th order Magnus exponential integrator given434

by (2.9) in [14]; MG6 denotes the 6th order Magnus exponential integrator specified by (3.10) in [5]; we435

use CF4 to refer to 4th order two exponential commutator-free quasi-Magnus exponential integrator436

listed in Table 2 of [6]; and CF6 is the first of the 6th order five exponential commutator-free quasi-437

Magnus exponential integrators listed in Table 3 of [6].438

The performance of exponential integrator methods depends critically on proper step length control.439

In order to give every possible benefit to the methods we compare our scheme against, we use the440

following two-phased approach. In the first phase, which was not timed, we determined a sequence441

of appropriate step sizes via a greedy algorithm. More explicitly, at each step, we started with a442

large step size h and repeatedly reduced it by a factor of 0.95 until an estimate of the local error fell443

bellow ϵ = 10−12. The local error estimate was obtained by taking two steps of length h/2 in order444

to produce a (hopefully) superior approximation of the value of the solution at the terminal point. In445
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Fig. 2: The errors in the solutions of the initial value problem of Subsection 5.2 obtained via four
Magnus-type exponential integrator methods and the Levin-type algorithm of this paper.

the second phase, the equation was solved using the precomputed sequence of step lengths. It is only446

the second phase of the calculation which was timed.447

For each ω = 20, 21, . . . , 214 and each of the five methods, we solved the differential equation448

y′′′(t) + q2(t)y
′′(t) + q1(t)y

′(t) + q0(t)y(t) = 0, (5.2)449

where450

q0(t) = −
ω (etω − i) (cos(8t) + 3)

((
t2 + 1

)
cos(3t)− iω

)
t2 + 1

q1(t) =
ω
(
−
(
ω + i

(
t2 + 1

))
cos(8t) + etω

(
3t2 +

(
t2 + 1

)
cos(8t) + 4

)
− 3it2 − 3ω − 4i

)
t2 + 1

+

cos(3t)
(
i
(
et − 3

)
ω − iω cos(8t) + 1

)
and

q2(t) = i

(
1

t2 + 1
− et + 3

)
ω + iω cos(8t)− cos(3t)− 1,

(5.3)451

over the interval [0, 0.1] subject to the conditions452

y(0) = 1, y′(0) = iω and y′′(0) = (iω)2. (5.4)453

The eigenvalues of the coefficient matrix corresponding to Equation (5.2) are454

λ1(t) = 1 + ietω, λ2(t) = cos(3t)− iω

t2 + 1
and λ3(t) = −iω(cos(8t) + 3). (5.5)455

As in the case of the experiment of the last section, owing to the difficulty of computing solutions at456

arbitrary points using step methods, we assessed the accuracy of the obtained solutions by measuring457

the absolute error in their values at the endpoint t = 0.1 of the solution domain only. Moreover,458

we only considered values of ω up to 214 because the cost of finding appropriate step sizes becomes459

excessive for larger values of ω.460

Figure 2 and Table 1 give the results. We observe that all of the methods achieve reasonably accuracy461

given the requested level of precision. Not surprisingly, given the difference in the asymptotic behav-462

iour of the running time of these algorithms with respect to frequency, the algorithm of this paper463

is orders of magnitude faster than the exponential integrator methods at high frequencies. In fact,464
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when ω = 214, our approach is more than 3, 000 times faster than the most efficient of the exponential465

integrator methods. What is perhaps surprising, is that the algorithm of this paper is faster than the466

various exponential integrator methods even at very low frequencies. This is indicative of the fact467

that, even in the low-frequency regime, phase functions are not much more expensive to represent468

than the solutions of the scalar equation itself.469

5.3. A boundary value problem for a third order equation. In the experiment described470

in this section, we considered the equation471

y′′′(t) + q2(t)y
′′(t) + q1(t)y

′(t) + q0(t)y(t) = 0, (5.6)472

where473

q0(t) = −iettω
(
et − iet

2

ω
)
(cos(12t) + 2),

q1(t) = et
2

ω
(
2ω − iett

)
+ ω

(
et

2

ω + iet(t+ 1)
)
cos(12t) + et

(
ett+ 2i(t+ 1)ω

)
and

q2(t) = iet
2

ω − iω cos(12t)− et(t+ 1)− 2iω.

(5.7)474

The eigenvalues of the coefficient matrix corresponding to (5.6) are475

λ1(t) = iω(cos(12t) + 2), λ2(t) = tet and λ3(t) = et − iet
2

ω. (5.8)476

For each ω = 20, 21, . . . , 220, we used our algorithm to solve (5.6) over the interval [−1, 1] subject to477

the conditions478

y(−1) = y(1) = 1 and y′(−1) = 0. (5.9)479

We measured the absolute error in each resulting solution at 10,000 equispaced points in the interval480

[−1, 1] via comparison with a reference solution constructed using the solver of Appendix A.481

ω MG4 CF4 MG6 CF6 Levin

20 2.79×10−03 3.77×10−03 9.70×10−04 9.89×10−04 6.88×10−04

21 3.72×10−03 4.96×10−03 1.46×10−03 1.46×10−03 7.07×10−04

22 7.42×10−03 8.97×10−03 2.95×10−03 2.45×10−03 7.35×10−04

23 1.51×10−02 1.47×10−02 5.42×10−03 3.44×10−03 8.91×10−04

24 2.55×10−02 2.44×10−02 9.71×10−03 6.42×10−03 7.57×10−04

25 4.42×10−02 4.59×10−02 1.94×10−02 1.23×10−02 7.60×10−04

26 7.79×10−02 8.07×10−02 3.48×10−02 2.13×10−02 7.61×10−04

27 1.35×10−01 1.40×10−01 6.46×10−02 3.99×10−02 7.62×10−04

28 2.48×10−01 2.48×10−01 1.13×10−01 7.21×10−02 7.63×10−04

29 4.35×10−01 4.40×10−01 2.14×10−01 1.31×10−01 7.43×10−04

210 7.61×10−01 7.59×10−01 3.95×10−01 2.41×10−01 7.42×10−04

211 1.35×10+00 1.30×10+00 6.96×10−01 4.27×10−01 7.41×10−04

212 2.25×10+00 2.25×10+00 1.29×10+00 7.93×10−01 7.42×10−04

213 3.88×10+00 3.95×10+00 2.27×10+00 1.41×10+00 7.40×10−04

214 6.78×10+00 7.02×10+00 4.36×10+00 2.74×10+00 7.41×10−04

Table 1: The time, in second, required by four Magnus-type exponential integrator methods and the
Levin-type algorithm of this paper to solve the initial value problem of Subsection 5.2.
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Fig. 3: The results of the experiments of Subsection 5.3. The plot at top left gives the running time of
the method of this paper in the low-frequency regime. The top-middle plot gives reports the absolute
error in the solution of the boundary value problem for (5.6) in the low-frequency regime. The plot at
top right shows the total number of piecewise Chebyshev coefficients required to represent the slowly-
varying phase functions, again in the low-frequency regime. The plots on the bottom row provide the
same information, but in the high-frequency regime.
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Fig. 4: The derivatives of the three slowly-varying phase functions produced by applying the method
of this paper to Equation (5.6) of Subsection 5.3 when the parameter ω is equal to 216. Each column
corresponds to one of the phase functions, with the real part appearing in the first row and the
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This manuscript is for review purposes only.



16 A. MURDOCK AND J. BREMER

The results are given in Figure 3 while Figure 4 contains plots of the derivatives of the three slowly-482

varying phase functions produced by applying the method of this paper to Equation (5.6) when483

ω = 216. As expected, the running time of the method of this paper increases until a certain fre-484

quency threshold is passed, at which point it falls precipitously before becoming slowing decreasing.485

The maximum observed absolute error in the solution grows consistently with ω, which is as expected486

considering that the condition number of the problem deteriorates with increasing frequency. For all487

values of ω greater than or equal to 29, less than 10 milliseconds was required to solve the bound-488

ary value problem and fewer than 1,000 Chebyshev coefficients were needed to represent the phase489

functions. No more than 60 milliseconds and 6,000 coefficients were required in the worst case. The490

frequency Ω of the problems considered increased from approximately 3.9 when ω = 1 to roughly491

4,100,531 when ω = 220.492

5.4. An initial value problem for a fourth order equation. In this experiment, we493

considered the linear scalar ordinary differential equation494

y′′′′(t) + q3(t)y
′′′(t) + q2(t)y

′′(t) + q1(t)y
′(t) + q0(t)y(t) = 0 (5.10)495

whose coefficient matrix has eigenvalues496

λ1(t) =
t

2
+ iet

2

ω, λ2(t) =
iω

t2 + 2
+ eit, λ3(t) = cos(3t) and λ4(t) = −i

(
t2 + 1

)
ω. (5.11)497

Formulas for the coefficients q0, q1, q2 and q3 are too unwieldy to reproduce here, but they can be498

easily calculated from (5.11) using a computer algebra system. For each ω = 20, 21, . . . , 220, we used499

the algorithm of this paper to solve (5.10) over the interval [−1, 1] subject to the conditions500

y(0) = 1, y′(0) = iω, y′′(0) = (iω)2 and y′′′(0) = (iω)3. (5.12)501

We measured the absolute error in each resulting solution at 10,000 equispaced points in the interval502

[−1, 1] via comparison with a reference solution constructed using the solver of Appendix A. The503

results are given in Figure 5. We observe that for all ω greater than or equal to 29, fewer than 8504

milliseconds was required to solve the problem and less than 250 piecewise Chebyshev coefficients505

were required to represent the phase functions. In the worst case, when ω = 26, the solver took506

around 92 milliseconds and 3,200 piecewise Chebyshev coefficients were needed. The frequency Ω507

of the problems considered ranged from around 2.97 when ω = 1 to approximately 3, 067, 403 when508

ω = 220.509

6. Conclusions. We have described a numerical algorithm for the solution of linear scalar510

ordinary differential equations with slowly-varying coefficients whose running time is bounded inde-511

pendent of frequency. It is competitive with cutting edge methods for second order equations, and512

significantly faster than state-of-the-art methods for higher order equations. The key observation513

underlying our algorithm is that the solutions of scalar linear ordinary differential equations can be514

efficiently represented via phase functions. One of the main differences between our algorithm and515

many alternative approaches is that, rather than trying to approximate phase functions with a series516

expansion or an iterative process, we construct them by simply solving the Riccati equation numeri-517

cally.518

In the case of second order equations, the principles which underlie our solver have been rigorously519

justified. However, we have not yet proved the analogous results for higher order scalar equations.520

This is the subject of ongoing work by authors.521

There are a number of obvious mechanisms for accelerating our algorithm. Perhaps the simplest522

would be to replace the robust but fairly slow solver of Appendix A with a faster method. We could523

also exploit the symmetries possessed by the solutions of the Riccati equation. For example, when524

the coefficient q in the second order equation (1.9) is real-valued, there is a pair of slowly-varying525

phase functions ψ1 and ψ2 related by complex conjugation (i.e., ψ1 = ψ2) and it is only necessary to526
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Fig. 5: The results of the experiments of Subsection 5.4. The plot at top left gives the running time
of the algorithm of this paper in the low-frequency regime. The top-middle plot gives reports the
absolute error in the solution of the initial value problem for (5.10) in the low-frequency regime. The
plot at top right shows the total number of piecewise Chebyshev coefficients required to represent
the slowly-varying phase functions, again in the low-frequency regime. The plots on the bottom row
provide the same information, but in the high-frequency regime.

construct one of these phase functions.527

The authors have also developed a “global” variant of the algorithm of this paper. Rather than528

applying the Levin procedure only to calculate the values of r1, . . . , rn at a single point in the solution529

domain, it uses it as the basis of an adaptive method for calculating r1, . . . , rn over the entire solution530

domain. This approach is generally faster than that of this paper in the event that all of the eigenvalues531

λ1(t), . . . , λn(t) of the coefficient matrix for (1.2) are of large magnitude. However, when one or more532

of the eigenvalues is of small magnitude, the slowly-varying phase functions are nonunique and the533

method runs into difficulties. A preliminary discussion of the global variant of our algorithm can be534

found in [2]; a thorough description of it will be given by the authors at a later data. The authors also535

plan to describe the generalization of the algorithm of [8] to equations of the form (1.1) and compare536

it to the method of this paper and its global variant.537

It is straightforward to generalize our method to the case of scalar differential equations which are538

nondegenerate on an interval [a, b] except at a finite collection of turning points. This can be done by539

applying the algorithm of this paper to a collection of subintervals of [a, b].540

Finally, we note that because essentially any system of linear ordinary differential equations can be541

transformed into a scalar equation (see, for instance, [22]), the algorithm of this paper can be used542

to solve a large class of systems of linear ordinary differential equations in time bounded independent543

of frequency. The preprint [12] introduces an algorithm based on this approach; that is, transforming544

a system of linear ordinary differential equations into a scalar equation which is then solved via the545

algorithm of this paper.546
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Appendix A. An adaptive spectral solver for ordinary differential equations.602

In this appendix, we detail a standard adaptive spectral method for solving ordinary differential603

equations. It is used by the algorithm of this paper, and also to calculate reference solutions in our604
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numerical experiments. We describe its operation in the case of the initial value problem605 {
y′(t) = F (t,y(t)), a < t < b,

y(a) = v
(A.1)606

where F : Rn+1 → Cn is smooth and v ∈ Cn. However, the solver can be easily modified to produce607

a solution with a specified value at any point η in [a, b]. Moreover, by running the solver multiple608

times, a basis in the space of solutions of a system of differential equations can be constructed and609

used to solve boundary value problems as well.610

The solver takes as input a positive integer k, a tolerance parameter ϵ, an interval (a, b), the vector611

v and a subroutine for evaluating the function F . It outputs n piecewise (k − 1)st order Chebyshev612

expansions, one for each of the components yi(t) of the solution y of (A.1).613

The solver maintains two lists of subintervals of (a, b): one consisting of what we term “accepted614

subintervals” and the other of subintervals which have yet to be processed. A subinterval is accepted615

if the solution is deemed to be adequately represented by a (k − 1)st order Chebyshev expansion on616

that subinterval. Initially, the list of accepted subintervals is empty and the list of subintervals to617

process contains the single interval (a, b). It then operates as follows until the list of subintervals to618

process is empty:619

1. Find, in the list of subinterval to process, the interval (c, d) such that c is as small as possible620

and remove this subinterval from the list.621

2. Solve the initial value problem622 {
u′(t) = F (t,u(t)), c < t < d,

u(c) = w
(A.2)623

If (c, d) = (a, b), then we take w = v. Otherwise, the value of the solution at the point c has624

already been approximated, and we use that estimate for w in (A.2).625

If the problem is linear, a straightforward Chebyshev integral equation method is used to solve626

(A.2). Otherwise, the trapezoidal method is first used to produce an initial approximation627

y0 of the solution and then Newton’s method is applied to refine it. The linearized problems628

are solved using a Chebyshev integral equation method.629

In any event, the result is a set of (k − 1)st order Chebyshev expansions630

ui(t) ≈
k−1∑
j=0

λij Tj

(
2

d− c
t+

c+ d

c− d

)
, i = 1, . . . , n, (A.3)631

which purportedly approximate the components u1, . . . , un of the solution of (A.2).632

3. Compute the quantities633 √∑k−1
j=k−2 |λij |

2√∑k−1
j=0 |λij |

2
, i = 1, . . . , n, (A.4)634

where the λij are the coefficients in the expansions (A.3). If any of the resulting values is635

larger than ϵ, then we split the subinterval into two halves
(
c, c+d

2

)
and

(
c+d
2 , d

)
and place636

them on the list of subintervals to process. Otherwise, we place the subinterval (c, d) on the637

list of accepted subintervals.638

At the conclusion of this procedure, we have (k− 1)st order piecewise Chebyshev expansions for each639

component of the solution, with the list of accepted subintervals determining the partition of [a, b].640
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