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Abstract
In this report, we study the behaviour of the simple pendulum, as well as the numerical relations between the
parameters of the function which governs its motion. A pendulum consisting of two strings supporting a weight to
two independently fixed pivot points, designed in such a way as to allow the mass, length, and amplitude of the
system to easily be altered, is used to collect all the data considered in this report. It is concluded that the angular
amplitude depends on time periodically with an exponentially decaying envelope so long as the initial angular
amplitude lies in the domain of |θ0| < 0.25rads. It is further concluded that the length of the pendulum dictates the
observed period of oscillation as T = 2

√
ℓ, where T is the period of oscillation and ℓ is the length of the pendulum.

The decay coefficient, τ is observed to have quadratic relations depending on both the length and initial angular
amplitude, while having logarithmic dependence on the mass m of the weight being used. Finally, a numerical
estimation of the symmetry is underwent to conclude that the constructed pendulum has 98.7% symmetry, and by
extension, implies strong correlation between the expected behaviour and the observed behaviour of the system.

Introduction
The pendulum is a thoroughly studied and well understood dynamical system which acts as a crucial learning
experience for young physicists. This model provides an opportunity to further grasp and understand the
importance of the small angle approximation not only in the physical sense, but also as a strong mathematical tool
which can commonly be deployed to greatly simplify a problem. To set the stage for the theoretical framework
which follows, let a point particle of mass m be suspended from a immovable pivot point by a massless string of
length ℓ with negligible thickness. Define the value θ to be the angle that the string makes with the vertical line
which passes through the pivot point. A schematic diagram of the system is included in Figure 1. The forces acting
on the mass are the force due to gravity, the tangential component of such being given by Fg = −mg sin θ, as well
as force due to wind resistance; drag. The magnitude of the drag force is proportional to the (tangential) velocity
of the mass (which in this case is ℓθ̇): Fd = γℓθ̇, where γ is the constant of proportionality called the drag
coefficient [Lea09]. Then Newton’s second law provides;

mℓθ̈ = −mg sin θ − γℓθ̇ (1)

Under the small angle approximation sin θ ≈ θ, Eq.(1) becomes

θ̈ + γ

m
θ̇ + ω2θ = 0 (2)

where ω =
√

g/ℓ. This is the equation that governs the motion of the damped pendulum under the small angle
approximation. The general solution to Eq.(2), while stipulating that θ̇(0) = 0 and that the drag force is
sufficiently small (namely, (γ2/m2) << 1), is given by

θ(t) = θ0e−t/τ cos (ω′t) = θ0e−t/τ cos
(

2πt

T

)
(3)

where ω′ =
√

g
ℓ − γ2

2m2 ; the angular frequency, and τ = m/γ; the decay coefficient [Ser13]. This implies that the
rate of decay is independent of the initial amplitude, and remains constant in time. It is important to notice that a
large value of γ results in a quickly decaying exponential e−t/τ , which aligns with physical intuition. Again
assuming γ2 << m2, this provides that ω′ ≈ ω. Using the fact that the angular frequency is related to the period of
oscillation by ω = 2π/T , we can set

T = 2π

√
ℓ

g
≈ 2

√
L + D (4)

Where we set ℓ = L + D, L being the length of the string and D being the distance from the centre of mass to the
point where the string is attached (which is non-zero for a physical pendulum). The relationship given by Eq.(4)
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directly implies that the period of oscillation is independent of m and θ0, and stays constant throughout time. The
goal of this paper is to test the accuracy of Eq.(3) and Eq.(4), analyze the dependence of the decay coefficient τ on
m, ℓ, and θ0, and estimate a domain on which the small angle approximation remains valid through the use of a
physical damped pendulum. Various physical limitations certainly arise in the construction of the pendulum, and
as such, the symmetry of the pendulum is to be quantified. These dependencies will be quantified by constructing a
physical pendulum, the motion of which will be tracked and analyzed over time. From the collected data, estimates
on the various unknown quantities which appear in Eq.(3) will be derived, from which the validity of the theoretical
claims mentioned above will be tested.

Finally, various uncertainty values will be computed from the collected data, all of which are propagated using the
uncertainties in the dependent and independent variables alike. The uncertainty value, σF , of a function F (x, y) is
given by

σ2
F =

(
∂F

∂x

)
σ2

x +
(

∂F

∂y

)
σ2

y + 2∂F

∂x

∂F

∂y
σxy (5)

Where σx is the uncertainty in x and likewise for σy [Wik23]. Note that σxy = σxσyρxy is the covariance between
the two values x and y, and ρxy the correlation between x and y. For the purposes of this experiment, the
correlation is always taken to be 0.

Experimental Procedure
The numerical relations and values of interest, as discussed in the introduction, are estimated by varying three
main independent variables: the mass m, the initial amplitude θ0, and the length of the string L. To obtain
objective results, it is crucial that only one independent variable is altered at a time. The value D = 0.004m holds
true for all of the weights used in this experiment. The above theory relies on the fact that the mass is restricted to
a two-dimensional plane of motion: the value of θ uniquely specifies the position of the mass at any given time. In
an effort to do so, the method of Newton’s cradle is deployed: the mass is held by two strings, attached to different
pivot points. The two pivot points are in turn held stationary by metal posts that are firmly planted in place as to
not move when undergoing measurements. Again, a schematic diagram of the system is included in Figure 1. To
ensure symmetry in the motion of the mass, the strings must be attached to the pivot points in such a way that the
length of the string remains constant throughout an entire period. To do so, hose clamps are used to hold the
strings firmly in place on the metal poles. Due to how thin these hose clamps are and how firmly they grab onto
the pole, the length of the pendulum remains constant, and hence the system act highly symmetrically. Ultimately,
this ensures that the metal poles act as a clean hinge for the string to turn about. These minuscule details about
the specifications of the system truly contribute to decreasing the uncertainties in each measurement, and by
extension, improve the results themselves. The symmetry of the system, however, is further discussed and
ultimately quantified in the results section of this report.

In total, 16 sets of data were collected, each of which includes at least 60 seconds of oscillation of the pendulum.
Six (6) sets were collected while leaving the mass and length of the pendulum fixed at m = 50g, L = 100mm, and
varying the initial angular amplitude of the mass. The actual numerical values of these initial amplitudes are of
little importance so long as a breadth of values are used between 0 and π/2. With that being said, three of these
data sets were taken with initial angular amplitude θ0 < 0.20rad. Similarly, five (5) sets were collected leaving the
mass and initial angular amplitude fixed at m = 100g and θ0 = 0.22rads, while varying the length of the string L.
Keeping the mass fixed is rather simple, however the method used to fix θ0 is to mark a location (that lies in the
same plane as the pendulum’s motion) on the supporting surface, and drop the mass in such a way that the string,
if extended to the hit the surface, would intersect this point. Only after numerical analysis is the actual value of
this θ0 determined. This method is depicted nicely in the schematic diagram of the system, Figure 1. The lengths
used in this data set are L = 75mm, 100mm, 125mm, 150mm and 200mm. Finally, five (5) sets of data were
collected leaving the length and initial angular amplitude fixed at L = 100mm and θ0 = 0.22rads, while varying the
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mass of the pendulum. The same method which was described above to leave θ0 fixed is again used for this
collection of data. The masses of the weights used in this collection are m = 50g, 100g, 200g, 400g, and 500g.

Figure 1: A 3d schematic diagram describing the system used to take all of the data for this report. It is labelled with the
relevant variables, as well as a blue dot indicating the object used to optimize the tracking and data recording process.

The aforementioned sets of data are taken as an MP4 file using an iPhone, and imported to the application
’Tracker: Video Analysis and Modelling Tool’. Tracker uses automated RGB line profiling to record the position of
an object at any given time [Tra09]. In order to truly exploit the full power and accuracy of this application,
distinct variability between the colour of the object being tracked and the colour of the backdrop are essential
prerequisites for obtaining clean and accurate results. As such, a piece of blue tape of approximately 5mm diameter
is placed on the centre of mass of each weight used. This allows for Tracker to swiftly differentiate between the
weight and any other object in the frame of the recording between time steps. With that being said, uncertainty in
each recorded value arises due to the size of the tape being used: Tracker simply pinpoints a location that matches
the previous RGB reading (up to 20% evolution), which leaves a 5mm variability between possible recordings. This
variability (and resulting implications) is discussed in further detail in the uncertainty analysis section of the
report. After recording the position of the weights at each time step, Tracker provides a three dimensional .txt file
indicating the (x, y) coordinates of the weight at each time step. All of these files are imported to Python and
fitted, using SciPy’s curve fit, to the functional form of Eq.(2). The values of θ0, T and τ are optimized to
replicate the data as accurately as possible, values of which are then used to test the validity of the theoretical
claims made in the introduction.

Uncertainty Analysis
Multiple sources of uncertainty come into play in the numerical analysis of this pendulum. Minor contributions
arise from deviations in the length of the string throughout the motion of the mass. As to ensure a sufficiently large
uncertainty is propagated for all combinations of the independent variables (in particular paying attention to the
proportionality between the magnitude of the stretching and the mass of the object), it was measured that the
string stretched a distance 2.00mm between a 20.00g mass (as to keep the string taught) and the 500.00g mass (the
largest mass used), and therefore an uncertainty value of 2.00m is placed on the length of the string L. Other
uncertainties may arise from motion of the pivot point, however the system used two large 30kg stands with broad
bases, and no motion of either pivot point was visible throughout the experiment. As such, no additional
uncertainty is propagated from this plausible source of error.

The largest source of uncertainty, however, arises from within the tracking methods themselves. As briefly
discussed in the experimental procedure section of the report, Tracker pinpoints a single pixel on each frame, rather
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then an entire object. Efforts to reduce this source of uncertainty were deployed by placing a small piece of tape at
the centre of mass (from the perspective of the camera), however the size of the tape itself is certainly
non-negligible. The same size of tape is used in each set of data, the diameter of which is 0.006m. It is assumed
that the geometric centre of the tape is recorded on each frame, thus resulting in an uncertainty value of 0.003m in
both the x and y coordinates. Using this value, the uncertainty in the angle θ is propagated using Eq.(5). Given
values of x and y, the angle θ is then given by θ(x, y) = ℓ arctan

(
x
y

)
, so that the uncertainty in θ is given by;

σθ = ℓ

√
x2σ2

x + y2σ2
y

(x2 + y2)2 = ℓ

√
(0.003m)2

x2 + y2 (6)

Note that the uncertainty in the value ℓ here is ignored, and such an approximation is justified since the only term
involving such is σ2

ℓ /ℓ2 ≈ 0. The error is applied to every data point in every data set, and has the largest
magnitude over all other uncertainties making the tracking methods the largest source of uncertainty.

Results
Period of Oscillation T

As concluded from the theoretical considerations discussed in the introduction, it is hypothesized that the period of
oscillation T is independent of the mass m, the initial angular amplitude θ0, and is related to the length of the
string by Eq.(4). Figure 2a plots the estimated period of oscillation, optimized by curve fit over the first 100 time
steps, against their respective lengths ℓ for the five data sets with a fixed mass m = 0.1kg and fixed initial angular
amplitude θ0 = 0.22rads. The lengths used lie in the domain (0.075m, 0.20m) with the associated periods lying in
the domain (0.65s, 1.00s). These data points are then fitted with a functional form T = A

√
ℓ = A

√
L + D, with the

proportionality constant taking on a value of A = (1.96 ± 0.09)[s/
√

m], a value which certainly has magnitude
comparable to the hypothesized proportionality constant A = 2. The uncertainty propagation of A is done using
the covariance matrix provided by curve fit. The optimized fit carries a goodness of fit estimation of χ2 = 1.85;
this indicates a strong correlation between the collected data and fitted functional form. Up to uncertainty, the
expected value of the constant of proportionality, A = 2[s/

√
m], and the computed value, A = (1.96 ± 0.09)[s/

√
m],

are equal in value, and thus the validity of Eq.(4) is concluded.

(a) Length versus estimated period of oscillation. (b) Residuals of collected data versus optimized fit.

Figure 2: (Left) A plot of the pendulum length versus estimated period of oscillation of the collected data sets with fixed
mass m = 0.10kg and initial angle θ0 = 0.22rad. This data is approximated with a functional fit of the form T (ℓ) = A

√
ℓ,

where the proportionality constant A was optimized to take on a value of A = (1.96 ± 0.09) s√
m . Further, a goodness of fit

estimate takes on a value of χ2 = 1.94, indicating a strong correlation. (Right) A plot of the residual values between the
collected data and the associated functional forms.
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To verify that the period of oscillation is independent of the masses being used, Figure 3a is generated, plotting the
estimated periods for each associated weight while leaving L = 0.1m and θ0 = 0.22rad fixed. These data points are
plotted alongside the constant function which takes on a value equal to that of the average period of the five data
sets under consideration. There is indeed significant deviation between each singular value of T and the average
value of T , however these deviations are at least an order of magnitude smaller than the magnitude of the periods
themselves. Further discussion on these deviations is included in the uncertainty analysis section of this report.
Observing the differentiation between the values of T for subsequent masses, it is rather clear that there is no
suitable correlation between the mass and the period other than their mutual independence. Indeed if there were a
relation, the period would be either increasing or decreasing with an increase in mass, neither trend of which
accurately describes the behaviour present in Figure 3a. As such, this data allows for conclusivity; the period of
oscillation T is independent of the mass m of the weights being used.

(a) Mass versus estimated period (b) Initial angular amplitude versus estimated period

Figure 3: (Left) A plot of the mass versus estimated period of oscillation of the collected data sets with fixed length L = 0.10m
and initial angle θ0 = 0.22rad. These points are plotted alongside the constant function of magnitude equal to the average
value of the estimated periods. (Right) A plot of the initial angular amplitude versus estimated period of oscillation of the
collected data sets with fixed length L = 0.10m and mass m = 0.05kg. These points are plotted alongside the constant function
of magnitude equal to the average value of the estimated periods.

Finally, to verify the independence of the period T on the initial angular amplitude θ0, Figure 3b plots the
estimated period of oscillation against the initial angular amplitude that each data set underwent. The average
value of the estimated periods is plotted alongside the data points. In an effort to truly display the existance of the
small angle approximation, eight (8) distinct data sets have been recorder, five of which take on initial angular
amplitude less that 0.25rads ≈ 15o. As is clearly evident in the generated plots, the estimated period takes on
highly consistent values for the first five data sets – the collection whose initial amplitude is sufficiently small. In
fact, up to uncertainty, the first five estimated periods are equal. Further increasing the initial amplitude, however,
results in an increase in the period of oscillation. This trend remains consistent for all of the plot points whose
initial angular amplitude exceeds 0.25rads. Hence, it is appropriate to conclude that the period of oscillation is
independent of the initial amplitude, so long as the initial amplitude is sufficiently small.

Decay Constant τ

For all 16 data sets, each of which captures a full minute of oscillation, a value of the decay coefficient τ is optimized
to fit the behaviour of the pendulum. In most cases, the resulting decay coefficient allows the optimized functional
fit of the form Eq.(3) to perfectly decay alongside of the envelope of the recorded data. This is displayed exquisitely
in Figures 6a and 6b, particularly the former of these which carries a goodness of fit estimation of χ2 = 1.35 and the
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envelope of which decays by a factor of (over) 1/e of its initial value; this objectively proves the exponential decay
in the angular amplitude of the mass over time. With that being said, a few of the functional fits did not result in
optimal or expected behaviour. Examples of such fits are included in Figures 19a and 19b which clearly indicate
that the functional form decays far faster than the collected data itself. This data, however, was taken with initial
angular amplitudes of θ0 = 0.68 and θ0 = 1.02 respectively; relatively large angles for which the approximation that
sin θ ≈ θ used to obtain Eq.(3) itself becomes increasingly crude. These are examples where the small angle
approximation fails; the level at which this approximation remains valid is discussed in further detail below.

In an effort to estimate the efficiency of the pendulum, the ratio of the decay coefficient to the period of oscillation
is computed for the various combinations of the independent variables. The value of all such ratios are included in
Table 1 in the appendix, and take on an average value of 108.02 (note that this value is a ratio of values of the
same units; the ratio is unitless). If only the cases where the small angle approximation is valid are considered, this
ratio takes on an average value of 119.77. These large values indicate a high level of efficiency within the system.

Naturally, the relationship between the independent variables ℓ, m, θ0 and the decay coefficient τ are of interest.
Figure 4 plots the decay coefficient for each length of pendulum, while leaving m = 0.1kg and θ0 = 0.22rads fixed,
alongside two possible functional forms: one linear and one (increasing) quadratic form. Both of these fits provide
decent correlation between the length of the pendulum and the decay coefficient, taking on goodness of fit
estimations of χ2 = 3.14 and χ2 = 2.42 respectively. Since the quadratic form has a better goodness of fit
estimation, it follows that the most likely correlation between ℓ and τ is given by

τ(ℓ) =
(
2935.98[s/m2]

)
ℓ2 + (6.76[s/m]) ℓ + 45.79s (7)

Residual plots of the collected data against both fits are included in Figures 7a and 7b. In a similar vein, Figure 5a
plots the decay coefficients for each value of the mass of the pendulum, while leaving L = 0.10m and θ0 = 0.22rads
fixed. This data is plotted alongside two separately optimized functional forms: one linear form and one
logarithmic form, each containing additive constants. The ladder of these plots approximates the data
spectacularly having an estimated goodness of fit of χ2 = 1.27. Since the linear fit fails to obtain a goodness of fit
closer to 1, it follows that the most likely correlation between m and τ is given by

τ(m) = (38.90s) log(m/(1kg)) + 167.61s (8)

Pendulum Length Versus Decay Coefficient

Figure 4: A plot of the various decay coefficients for the data with fixed mass m = 0.1kg and initial angular amplitude
θ0 = 0.22rads. This data is plotted alongside both a quadratic and linear fits, the form of each being printed onto the image,
along with their respective goodness of fit estimations.
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Figure 5a is accompanied by residual plots for both of the aforementioned functional forms given in Figures 8a and
8b in the appendix. Finally, Figure 5b plots the approximated decay coefficient for each value of the initial angular
amplitude while leaving L = 0.10m and m = 0.10kg fixed. These data points are plotted alongside two optimized
functional forms: one linear and one quadratic (both of which are decreasing on the domain of interest).

(a) Pendulum mass versus decay constant. (b) Pendulum initial angular amplitude versus decay constant

Figure 5: Plots summarizing the estimated decay constants against the mass of the pendulum and the initial angular amplitude
of the data sets respectively. These plots are included with goodness of fit estimations, as well as two possible functional forms
each. The data in Figure 5a is plotted with a linear fit and a logarithmic fit, the ladder of which producing the between
goodness of fit estimation. The data in Figure 5b is plotted with a linear fit and a quadratic fit, the ladder of which producing
the between goodness of fit estimation.

Admittedly, the goodness of fits for both of these forms are extremely high, indicating a poor correlation. This is
likely attributable to a lack of a sufficient number of data points as well as human error. With that being said, the
quadratic fit better correlates the two variables, taking on a goodness of fit estimation of χ2 = 29.24 and has the
form given by

τ(θ0) =
(
−41.18[s/rads2]

)
θ2

0 + (15.59[s/rads]) θ0 + 52.04s (9)

Likewise to the above discussions, Figure 5b is accompanied by residual plots for both the optimized forms are
given in Figures 9a and 9b. Note that each of the coefficients in each of the above expression (namely Eqs.(7) - (9))
carry an uncertainty value which is propagated by the covariance matrix produced by curve fit, however their
values are not included as it is beyond the focus of this report.

Symmetry
A perfectly symmetric simple pendulum with no damping due to drag would have the property that
θ(t) = −θ(t + T/2), for all time t where T is the period of oscillation. Any deviation from this equality implies
asymmetry within the system. To quantify the asymmetry of the pendulum used to collect the data in this report,
this equality is tested at each point in time t. The idea is as follows: the first 100 data points1 of a single data set is
considered and fitted with a function of the form of Eq.(3), and as such, an estimation of the period of oscillation
over this set of data is obtained. This functional form is then used to obtain residuals between the functional form
and the recorded data, values of which can then be averaged to obtain an average absolute residual value. Now shift
the functional form θ(t) by an amount T/2 to the left, and multiply by -1: θ(t) 7→ −θ(t + T/2). For a perfectly
symmetric pendulum, the average value of absolute residuals between the collected data and the shifted functional
form should be precisely equal. Hence, the relative change between these two averages provides a quantitative

1The reasoning for only using the first 100 data points is because the symmetry of the system is entirely determined after undergoing
a single full oscillation anyways. The first 100 time steps include approximately four full oscillations of the pendulum, and thus this is
sufficient to accurately estimate the observed level of symmetry.
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estimate of the asymmetry of the pendulum, and subtracting this value from 1 provides a quantitative estimate of
the symmetry of the pendulum.

Plotted in Figures 10a, 11a are the first 100 time steps of the motion of pendulum with a length L = 0.1m, a mass
of m = 0.1kg and initial angular amplitude θ0 = 0.22rads plotted alongside a optimized functional form, and the
associated residual values respectively. Plotted in Figure 10b is the same collected data, only plotted alongside the
same functional form, but shifted to the left by a time T/2 = (0.360 ± 0.002)s. Finally, plotted in Figure 11b is the
residuals of the collected data and the shifted functional form. Visually, Figures 10a and 10b are extremely similar,
and likewise for Figures 11a and 11b – this speaks to the high level of symmetry present in the pendulum. In fact,
up to uncertainty in the angular amplitude θ, the pendulum is perfectly symmetric. With that being said, the
average (absolute) residual value present in Figure 11a is 0.0048, while that of Figure 11b is 0.0049, providing a
relative difference of

C = 0.0049 − 0.0048
0.0049 = 0.013

In other words, the pendulum is 1.3% asymmetric or equivalently, 98.7% symmetric: a fairly high level of
symmetry. Reasons for any asymmetry at all are attributed to the effect of drag and hence the exponential decay of
the envelope of the collected data.

Small Angle Approximation
The goal here is to provide a numerical domain of the initial angular amplitude for which the theory discussed in
the introduction. Issues resulting from a large angular amplitude appear in the expected independence of the
period of oscillation with respect to the initial angular amplitude, as well as for the validity of the functional fit of
the form Eq.(3) for large initial angles. As discussed above, consistency in the estimated period (up to uncertainty)
remains constant for various initial angles so long as the magnitude of the initial angle does not exceed 0.25rads.
Conversely, the goodness of fit estimations for Figures (17a) through (19b) in the appendix remain reasonable up to
Figure (19a), at which point the functional form does not accurately represent the behaviour of the data. It is thus
evident that the behaviour of the pendulum follows the form of Eq.(3) for cases where the initial angular amplitude
does not exceed 0.41rads (which was the initial angular amplitude of the data plotted in Figure (18b)). Taking the
stricter of the two (independently obtained) conditions, a small angle approximation is valid for values of θ which
lie in the domain |θ0| < 0.25rads.

Conclusion
As hypothesized in the introduction, the angular amplitude of the pendulum is governed by Eq.(3) so long as
|θ0| < 0.25rads; the domain at which the small angle approximation remains valid. It is further concluded that both
the mass and the angular amplitude have no impact on period of oscillation of the pendulum, so long as the small
angle approximation is uniformly satisfied. A quantitative analysis of the system results in an estimated symmetry
of 98.7% and a high level of mechanical symmetry, obtaining an average decay coefficient to period of oscillation
quotient of 108.02. High efficiency and symmetry lead directly to minimal uncertainties and by extension, accurate
results which align with the theoretical framework introduced in the introduction. Moreover, through varying the
length of the pendulum ℓ (and leaving all other variables fixed) it is concluded that the period of oscillation T

depends on ℓ as T = 2
√

ℓ. Finally, the drag coefficient estimations yields data that indicates quadratically
increasing, logarithmic, and quadratically decreasing dependence of τ on the length ℓ, mass m, and initial
amplitude θ0 respectively.
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Appendix

(a) m = 0.10kg, L = 0.10m, θ0 = 0.13rads (b) m = 0.10kg, L = 0.10m, θ0 = 0.19rads

Figure 6: Plots of two sets of data which visually display the exponential decay of the amplitude of the pendulum as time
evolves. The respective functional fits have a decay constant of τ1 = (76.06 ± 2.81)s and τ2 = (51.35 ± 0.28)s.

Table 1: A table displaying the values of the quotient of τ/T for all of the data sets. In each column, the indicated
independent variable is change, while all others are remained fixed. Note that each of the values of the ratios are
numbers; these are unitless quantities used entirely for the purpose of gaining numerical estimations on the efficiency
of the system. Note that only five data sets were collected where the length and mass are left fixed, while there are
fix data sets with distinct angles.

Independent Variable Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5 Data Set 6
Mass m [kg] 99.73 ± 4.33 103.19 ± 2.95 135.45 ± 7.07 130.47 ± 5.96 174.21 ± 5.16 N/A
Length L [m] 73.52 ± 2.81 103.23 ± 2.95 138.32 ± 6.20 197.06 ± 11.09 186.16 ± 13.12 N/A

Amplitude θ0 [rads] 63.13 ± 0.33 71.91 ± 0.28 80.77 ± 3.34 89.91 ± 1.64 57.12 ± 0.46 24.32 ± 0.18
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Length ℓ Versus Decay Coefficient τ

(a) Residuals of quadratic fit for length versus decay coefficient (b) Residuals of linear fit for length versus decay coefficient

Figure 7: Residual plots denoting the residuals between the period versus τ points in Figure 4 and the two functional forms
fitted to the data.

Decay Coefficient τ

Mass m and Amplitude θ0 Versus Decay Coefficient τ

(a) Residuals of linear fit. (b) Residuals of quadratic fit.

Figure 8: Residual plots denoting the residuals between the mass versus τ points in Figure 5a and the two functional forms
fitted to the data.
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(a) Residuals of linear fit. (b) Residuals of quadratic fit.

Figure 9: Residual plots denoting the residuals between the initial angular amplitude versus τ points in Figure 9 and the two
functional forms fitted to the data.

(a) L = 0.1m, m = 0.1kg, and θ0 = 0.22rads. (b) L = 0.1m, m = 0.1kg, and θ0 = 0.22rads.

Figure 10: Two plots of the first 100 data points of the pendulum with independent variables as stated above. Figure 10a
includes a functional fit of the form of Eq.(3) and is printed with it’s associated goodness of fit estimation. Figure 10b contains
the exact same functional form, but shifted a value T/2 = (0.36 ± 0.0012)s, and mirrored across the t axis.
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(a) Residuals of collected data in Figure 10a. (b) Residuals of collected data in Figure 10b.

Figure 11: Residual plots of the data in Figures 10a and 11a against the fitted functional form and the shifted functional
form respectively.

Raw Data Plots

(a) L = 0.075m, m = 0.10kg, θ0 = 0.22rads (b) L = 0.10m, m = 0.10kg, θ0 = 0.22rads

Figure 12: Plots of the angular amplitude versus time for two systems with independent variables specified above plotted
alongside an optimized function of the form Eq.(3). Each data set includes over 1 full minute of behaviour of the pendulum.
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(a) L = 0.125m, m = 0.10kg, θ0 = 0.22rads (b) L = 0.15m, m = 0.10kg, θ0 = 0.22rads

Figure 13: Plots of the angular amplitude versus time for two systems with independent variables specified above plotted
alongside an optimized function of the form Eq.(3). Each data set includes over 1 full minute of behaviour of the pendulum.

(a) L = 0.20m, m = 0.10kg, θ0 = 0.22rads (b) L = 0.10m, m = 0.05kg, θ0 = 0.22rads

Figure 14: Plots of the angular amplitude versus time for two systems with independent variables specified above plotted
alongside an optimized function of the form Eq.(3). Each data set includes over 1 full minute of behaviour of the pendulum.
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(a) L = 0.10m, m = 0.10kg, θ0 = 0.22rads (b) L = 0.10m, m = 0.10kg, θ0 = 0.22rads

Figure 15: Plots of the angular amplitude versus time for two systems with independent variables specified above plotted
alongside an optimized function of the form Eq.(3). Each data set includes over 1 full minute of behaviour of the pendulum.

(a) L = 0.10m, m = 0.20kg, θ0 = 0.22rads (b) L = 0.10m, m = 0.40kg, θ0 = 0.22rads

Figure 16: Plots of the angular amplitude versus time for two systems with independent variables specified above plotted
alongside an optimized function of the form Eq.(3). Each data set includes over 1 full minute of behaviour of the pendulum.
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(a) L = 0.10m, m = 0.05kg, θ0 = 0.13rads (b) L = 0.10m, m = 0.05kg, θ0 = 0.17rads

Figure 17: Plots of the angular amplitude versus time for two systems with independent variables specified above plotted
alongside an optimized function of the form Eq.(3). Each data set includes over 1 full minute of behaviour of the pendulum.

(a) L = 0.10m, m = 0.05kg, θ0 = 0.22rads (b) L = 0.10m, m = 0.05kg, θ0 = 0.44rads

Figure 18: Plots of the angular amplitude versus time for two systems with independent variables specified above plotted
alongside an optimized function of the form Eq.(3). Each data set includes over 1 full minute of behaviour of the pendulum.
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(a) L = 0.10m, m = 0.05kg, θ0 = 0.68rads (b) L = 0.10m, m = 0.05kg, θ0 = 1.02rads

Figure 19: Plots of the angular amplitude versus time for two systems with independent variables specified above plotted
alongside an optimized function of the form Eq.(3). Each data set includes over 1 full minute of behaviour of the pendulum.
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