
Aubry, Bona-Landry Page 1

FeatureFusion: Merging Diffusion Models
Through Representation Correlations

Murdock Aubry James Bona-Landry
University of Toronto University of Toronto

Department of Computer Science Department of Mathematics
murdock@cs.toronto.edu james.bonalandry@mail.utoronto.ca

Abstract

We introduce FeatureFusion, a novel framework for merging diffusion models trained on different
tasks without additional training. While existing methods like Diffusion Soup rely on simple
linear interpolation, which works well for models trained on the same task, our approach leverages
representation correlations across models to enable merging of specialists. Building upon ideas from
ZipIt! [21], our method forms convex combinations of all model weights scaled by their correlation
strength and relative operational scale, allowing diverse models to be integrated more effectively. We
provide theoretical analysis of the sampling distribution of merged models and demonstrate through
experiments with object-based and stylistic specialists that FeatureFusion preserves the capabilities
of constituent models while maintaining the computational efficiency of a single model. Qualitative
and quantitative results show that our approach successfully combines the strengths of specialist
models trained on different tasks into a unified model with no additional inference overhead.

Figure 1: Main Methodology. A qualitative comparison of the Diffusion Soup [3] and ZipIt! [21]
merging frameworks against the proposed FeatureFusion. The top row summarizes the process of merging
linear weights and convolutional layers through the latter. The colours describe the way each method
matches distinct convolutional filters and weight matrices. Diffusion Soup linearly interpolates the
constituent model weights according weight names. ZipIt! pairs weights based on how correlated the
corresponding features are, but only merges pairwise and with even weightings. FeatureFusion considers
all pairwise correlations, and each new weight is a convex sum of all other weights in the corresponding
layer, weighted based on the strength and scale of the correlation.

mailto:murdock@cs.toronto.edu
mailto:james.bonalandry@mail.utoronto.ca

Aubry, Bona-Landry Page 2

Contents

1 Introduction 3

2 Background 3
2.1 Diffusion Models . 3
2.2 Stable Diffusion . 4

3 Related Work 4
3.1 ZipIt! [21] . 4
3.2 Diffusion Soup [3] . 5

4 New Approach: FeatureFusion 6
4.1 Overview . 6
4.2 How do we merge convolutional layers? . 6
4.3 How do we determine functional similarity? . 7
4.4 How do we then produce the merged filter? . 7
4.5 Sampling Distribution . 9
4.6 Through the Lens of Optimal Transport . 10

5 Experiments 12
5.1 Implementation Details . 12

5.1.1 Datasets . 12
5.1.2 Benchmarking Metrics . 12
5.1.3 Models . 12
5.1.4 Computational Resources . 12

5.2 FeatureFusion . 13
5.2.1 Results . 13
5.2.2 Computational Overhead . 13
5.2.3 Unlearning . 14

6 Discussion 14
6.1 Reproducibility Statement . 15
6.2 Beyond Same Architecture . 15

7 Conclusion 15

Aubry, Bona-Landry Page 3

1. Introduction
Merging neural networks without re-training and without introducing additional computational overhead
is a challenging task that has garnered much interest in recent years. While sophisticated approaches have
been explored in the general case [21], the specific problem of merging diffusion models remains largely
unexplored beyond linear interpolation of weights [3]. This approach is effective for models trained on the
same task, but inadequate for models trained on different tasks, among other limitations. In this work,
we propose a new approach to merging generative models by extending ideas from existing work [3, 21].
In particular, we aim to go beyond linear interpolation and achieve a more effective framework that
bypasses many existing challenges by leveraging feature similarities between models, drawing inspiration
from the techniques of [21].

2. Background

2.1. Diffusion Models
Diffusion models [6, 10, 19, 15, 14, 17, 18] are a class of generative models designed for generalizing on
text-to-image data, and operate by iteratively refining random noise samples through a learned denoising
process. During training, the model is exposed to a series of images x0 ∼ pdata(x)dx that are gradually
corrupted into pure noise N (0, I) according to the iterative forward process

xt =
√

1 − βtxt−1 +
√

βtϵt, t ∈ {1, . . . , T}, (1)

where ϵt ∼ N (0, I) is Gaussian noise and independent of ϵs for s ∈ {1, . . . , t − 1}, and βt > 0 is a small
constant controlling the strength of the corruption at the current time step t. This forward process can
be understood through the lens of stochastic calculus [20]. In particular, note that since βt is small,
Taylor expansion implies that

√
1 − βt ≈ 1 − 1

2 βt and hence we can think of (1) as expressing that

xt − xt−1 ≈ −1
2βtxt−1 +

√
βtϵt, t ∈ {1, . . . , T}, (2)

which is a discretization of the diffusion equation

dxt = −1
2βtxtdt +

√
βtdBt, 0 ≤ t ≤ T. (3)

It is a remarkable fact due to Anderson [2] that the reverse of a diffusion process is also a diffusion
process. In particular, for xt evolving according to the equation above, the time-reversed process xs for
s = s(t) := T − t satisfies

dxs =
(

−1
2βsxs − 1

2∇ log ps(xs)
)

ds +
√

βsdBs, 0 ≤ t ≤ T, (4)

where ps denotes the Lebesgue-density of the distribution of the latent xs. The significance of this is
that in order to simulate the reverse process and generate samples of pdata from pure noise, one simply
needs access to the so-called score function ∇ log pt. In general, determining this function analytically is
intractable, so in practice one instead approximates it via a neural network sθ(x, t). Specifically, observe
that by iterating (1) we can re-express the forward process as

xt = √
αtx0 +

√
1 − αtϵ, t ∈ {1, . . . , T}, (5)

where αt =
∏t

s=1(1 − βs) and ϵ ∼ N (0, I). It follows from this that, conditional on x0, the latents xt

are distributed according to N (√αtx0, (1 − αt)I). One can thus write down an explicit formula for the
Lebesgue-density pt|0 of this conditional law, which can then by logarithmically differentiated to obtain
the explicit formula ∇ log pt|0(x) = − x−√

αtx0
1−αt

for the conditional score ∇ log pt|0. In particular, note

Aubry, Bona-Landry Page 4

that when evaluated at the latent xt, (5) implies that the right-hand side reduces to −ϵ/
√

1 − αt. One
can thus train sθ(x, t) according to the loss function

Ex0∼pdata,ϵ∼N (0,I)

∥∥∥∥sθ(xt, t) + ϵ√
1 − αt

∥∥∥∥2
(6)

to approximate the conditional score ∇ log pt|0, and the true score ∇ log pt can then be recovered by
averaging over all possible initial states x0, weighted according to their likelihood given xt, that is,

∇ log pt(x) = Ex0∼p0|t
[∇ log pt|0(x)] ≈ Ex0∼p0|t

[sθ(x, t)]. (7)

For a more detailed and complete treatment of diffusion models through the lens of stochastic calculus,
we refer the reader to [20].

2.2. Stable Diffusion
It has become standard practice to use a U-Net as the underlying neural network sθ(x, t) in a diffusion
model. They operate by encoding images into a latent space, where they are then denoised step-by-
step before being decoded back into pixel space. The encoder and decoder both function through
convolutional layers, which allow the input data to be reliably downsampled and upsampled by capturing
relevant spatial information. In addition, timestep embeddings are injected to modulate the denoising
process and guide the model from general image-defining strokes towards careful and precise refinements.
Similarly, text embeddings and positional embeddings are used to condition the denoising process on the
prompt and retain spatial information throughout the process. Attention blocks are sometimes also
incorporated to improve overall performance through their ability to capture spatial relationships within
the input data.

3. Related Work

3.1. ZipIt! [21]
Much of the current work on the merging of neural networks [1, 24, 3] centres on permutation-based
interpolation approaches that require the models being merged to have been trained on the same
task. While merging models in this context has its merits (e.g. increased model robustness, improved
generalization, and better overall performance [22, 13]), it would be nice to have a framework for merging
models trained on different tasks into a single model capable of performing them all, ideally without any
additional computational overhead. In their 2024 paper ZipIt! Merging Models from Different Tasks
without Training [21], Stoica et al. present a framework addressing precisely this challenge, dubbed
ZipIt!. The basic idea is to interpolate neurons only if they have feature activations that are highly
correlated. Neurons that correspond to dissimilar feature activations, on the other hand, are left separate
so as to preserve task-specific information in the underlying models.

More precisely, suppose that we have two models A and B with exactly the same architecture (but not
necessarily trained on the same task) that we wish to merge. If LA

i and LB
i are corresponding linear

layers in these models with weight matrices W A
i and W B

i , biases bA
i and bB

i , and output features fA
i and

fB
i , then they are merged according to

W merged
i = MA

i W A
i UA

i−1 + MB
i W B

i UB
i−1 (8)

and
bmerged

i = MA
i bA

i + MB
i bB

i . (9)

Here, Mi = (MA
i , MB

i) is a merge matrix that is determined by the pairwise correlations of the entries
of the concatenated feature vector (fA

i , fB
i), and Ui = (UA

i , UB
i) is the pseudo-inverse of Mi (referred

Aubry, Bona-Landry Page 5

to as the unmerge matrix). Post-multiplication by Ui−1 in (8) is necessary to ensure that the outputs
of layer i − 1 get fed into the weight matrices W A

i and W B
i in a form that is consistent with what they

learned to expect during training. It is not necessary in (9) since the biases do not interact with data
from previous layers. See Section 4 of [21] for more details.

For nonlinear layers (e.g. BatchNorm, ReLU, etc.), one merges by “propagating” forward the merge and
unmerge matrices Mi and Ui of the most recent preceding linear layer. What exactly this means differs
depending on the type of nonlinear layer encountered, but for convolutional layers (i.e. what one would
likely see in a diffusion model) it amounts to applying Mi and Ui to each kernel location in a manner
analogous to (8). See the appendix in [21] for more details.

While ZipIt! serves as an effective and unprecedented framework for merging neural networks trained
on different tasks and of all varieties, certain limitations remain, for instance:

1. Data dependence: in order to determine the pairwise correlations of the entries of the concate-
nated feature vector (fA

i , fB
i), ZipIt! computes the correlations over a small pre-determined set of

sample inputs. The way models are merged is therefore dependent upon the set of sample inputs
used, which could possibly lead to poor generalization in models merged via this framework.

2. Challenges with nonlinear layers: the way ZipIt! handles nonlinear layers, while general, is
prone to loss of information. For instance, in the case of convolution layers, there is no reason
to expect that the filter weights are correlated in a way that would allow them to transform
meaningfully through “propagation” of the merge and unmerge matrices, as these are tailored for
a preceding linear layer and not the convolutional layer itself. The same problem is faced by other
nonlinear layers.

3. Limited experimental validation: so far, ZipIt! has only been tested on small image
classification models (see Section 5 of [21] for details). It is thus unclear how the framework
will scale for larger and more complicated architectures, such as transformers or diffusion models,
which typically involve more complex feature interactions.

The first two issues specifically are challenges that we endeavour to address in our new framework.

3.2. Diffusion Soup [3]
In their 2024 paper Diffusion Soup: Model Merging for Text-to-Image Diffusion Models, Biggs et al.
present a framework for merging diffusion models specifically that leverages the linear mode connectivity
often observed in models trained on the same task [8, 7]. Given N diffusion models (of the same
architecture) with parameters θ1, . . . , θN , a merged model is constructed by “souping” the parameters
θi according to a convex combination

θsoup :=
N∑

i=1
αiθi, (10)

where the coefficients αi are hyperparameters to be optimized prior to inference. The authors present two
different algorithms to this effect, both greedy algorithms based on iteratively updating the αi according
to performance on a pre-determined set of test data. See Section 4.2 of [3] for more details.

The authors go on to show that, with interpolation coefficients optimized in this fashion, a Diffusion
Soup of specialist models trained on different data shards outperforms a monolithic model trained on
the union of these data shards, specifically according to the evaluation metrics of IR and TIFA score
(see Section 6 of [3] for details). Theoretically, they attribute these findings to the fact that a Diffusion
Soup of models (approximately) samples from the geometric mean of the sampling distributions of the
constituent models, whereas a monolithic model (approximately) samples from the arithmetic mean of
these distributions (see Section 4.1 of [3] for details). The idea is that, by definition, the geometric mean
emphasizes regions in data space where all the constituent models agree (in the sense of Pi(x) being high
for all i, where Pi(x) denotes the likelihood of the image x according to the sampling distribution of

Aubry, Bona-Landry Page 6

A horse reading a
book

A young man
talks on his cell

phone.

A man sitting down
posing for a picture

while wearing a suit.

A cat that is
looking at a

television screen.

A white bread
sandwich on plate

filled with ham
and lettuce

A vintage storefront
with the text ’CAFE’

in neon letters

A train driving
down the tracks
under a bridge.

S
D

1
.4

S
p

e
ci

a
li

st
s

M
e

rg
e

d
(O

u
rs

)

Animals Body Parts Clothes Electronics Food Text Vehicles

Figure 2: Object-based Qualitative Results. Sample outputs of the base SD1.4 model, the specialist
models, and the cumulative merged model on various image generation tasks. The specialist images are
tested on prompts which align with the respective specialty. The merged outputs are the results of the
merging of the seven specialists with the based SD1.4 model.

model i), and suppresses regions in data space where they disagree. This is in stark contrast with the
arithmetic mean, which is sensitive to outliers in the data shards.

The main limitation of the Diffusion Soup framework, however, is that it requires the models being
merged to have been trained on the same tasks. This is one of the key issues that we address in our new
framework by drawing inspiration from the techniques of ZipIt! [21].

4. New Approach: FeatureFusion

4.1. Overview
Consider N diffusion models with identical architectures: a “base” model M1 and N − 1 specialist
models M2, . . . , MN . Our goal is to merge these models into a single model Mmerged which combines the
capabilities of each at no additional computational overhead. The framework we present here operates on
a layer-by-layer basis (i.e. we construct the merged model layer-by-layer by combining the corresponding
layers of the constituent models) and works exactly the same for both linear layers and convolutional
layers (i.e. what one would find in the U-Nets underlying the constituent models). For explanatory clarity,
we use the example of convolutional layers in the following sections detailing the merging procedure. For
linear layers, one should replace every instance of “filter” with “weight matrix”, and every instance of
“subfilter” with “row of a weight matrix”.

4.2. How do we merge convolutional layers?
In the ZipIt! framework, the core idea of merging based on feature correlation is applied only to linear
layers. For nonlinear layers (e.g. convolutional layers), merging is instead achieved by “propagating
forward” the merge and unmerge matrices of the most recent preceding linear layer. As previously
discussed, this is a lossy operation because there is no reason to expect that the filter weights of a given
convolutional layer are correlated in a way that would allow them to transform meaningfully under the
merge and unmerge matrices of a preceding linear layer. The new approach we present here offers a
solution to this problem by generalizing the core idea of ZipIt! so as to also apply to convolutional
layers.

Aubry, Bona-Landry Page 7

Concretely, consider corresponding convolutional layers L1, . . . , LN in the models that we wish to merge.
These layers operate through kernels (filters) K1, . . . , KN of some shape of the form

[out_channels, in_channels, filter_size, filter_size] (11)

that “sweep across” the input x, processing a local region at each step. The goal is to somehow combine
these filters into a single filter Kmerged that governs the corresponding convolutional layer of the merged
model.

Recall that for a pair of corresponding linear layers fA = WAx+bA and fB = WBx+bB , ZipIt! operates
by looking at the pairwise correlations between the feature activations of the neurons that make up these
layers. Pertinently, correlations are computed both within the same layer and across the two layers,
the idea being that neurons corresponding to highly correlated features can be combined even through
naïve means (e.g. linear interpolation) without losing too much information. We parallel this idea by
viewing the filters K1, . . . , KN as consisting of n = out_channels subfilters (or “neurons”) of shape
[in_channels, filter_size, filter_size], that is,

Ki = (k1
i , . . . , kn

i). (12)

Analogously to ZipIt!, we then merge subfilters both within and across the parent filters K1, . . . , KN

according to pairwise “functional similarity”.

4.3. How do we determine functional similarity?
In essence, functional similarity of the subfilters is determined similarly to the way it is determined for
the neurons of linear layers under ZipIt!. Specifically, whereas ZipIt! determines the functional similarity
between neurons i and j by looking at some empirical correlation measure between the feature activations
of these neurons over a set of sample inputs, we parallel this idea by concatenating the filters K1, . . . , KN

into a single vector

K = (k1
1, . . . , kn

1 , . . . , k1
N , . . . , kn

N) := (k1, . . . , kNn) (13)

of Nn subfilters and looking at an empirical correlation measure between the outputs produced by feeding
to K a large number of randomly generated data samples of shape

[Nout_channels, in_channels, filter_size, filter_size].

Note that, as in ZipIt!, the concatenation is simply to allow these correlations to be computed both
within and across the parent filters K1, . . . , KN , as opposed to just across these filters.

To be a bit more precise, each time a data sample is fed to K, the output is a tensor of shape
[Nout_channels,1]. By arranging these outputs as the columns of a matrix, we obtain a tensor
F of shape [Nout_channels, num_samples], the ith row of which can be thought of as providing
a “holistic description” of the ith subfilter in the concatenated filter vector K. Functional similarity
between subfilters i and j is then determined by computing the Pearson correlation coefficient between
rows i and j of this matrix. By doing this for each pair of rows i and j with i coming from the base
model, we obtain n · Nn Pearson correlation coefficients that can be arranged naturally into a n × Nn

Pearson correlation matrix P . In particular, this matrix has (i, j)-entry given by the Pearson correlation
coefficient between rows i (subfilter i of the base model) and j (subfilter j of K) of F .

4.4. How do we then produce the merged filter?
To produce the filter Kmerged upon which the corresponding layer of the merged model shall operate, we
draw inspiration from a few key observations:

1. Merging pairs of filters (as is done with the neurons of linear layers in ZipIt!) faces the problem
that a given subfilter ki ∈ K may be functionally similar to (in the sense of having high Pearson

Aubry, Bona-Landry Page 8

correlation coefficient with) several other subfilters. In this case, we are failing to fully exploit
redundancies in the models by only merging ki with a single other subfilter that it is correlated
with. A more natural approach is to take into account all subfilters ki is correlated with, for
instance by defining

kmerged
1 :=

Nn∑
j=1

P1,jkj , . . . , kmerged
n :=

Nn∑
j=1

Pn,jkj ⇐⇒ Kmerged := P · K (14)

In this example, we have produced a collection of n merged subfilters that receive influence from
every other subfilter (both within and across the parent filters), with the strength of influence being
governed by correlation. In particular, kmerged

i is heavily influenced by subfilters that are highly
correlated with the base model subfilter ki, and receives virtually no influence from subfilters that
are not correlated with ki. In other words, we can think of kmerged

i as being a blend of all subfilters
(across all N models) that are correlated with ki.

2. Suppose that two subfilters ki, kj ∈ K are functionally similar in the sense of having high Pearson
correlation coefficient Pij . This means that they are approximately linearly correlated, i.e. there
is a nonzero number m ∈ R such that

kj(x) ≈ mki(x), (15)

where ki(x) denotes the action of ki on an input sample x, and similarly for kj(x). Notice that if
m ≫ 1, for instance, then this says that ki is a lot like kj but operates at a fraction of the scale.
Merging according to 1

2 (ki + kj) thus has the effect of producing something akin to 1
2 kj , which (as

a distorted version of the original subfilter kj) is not likely to perform well. Evidently, we need to
take this difference in scale into account. Precisely, prior to merging we should scale ki up by m (or
scale kj down by 1

m) to “level the playing field” and allow both subfilters to contribute meaningfully
to the merge. This viewpoint becomes even more natural when we consider the case of m < 0 (i.e.
the subfilters ki and kj are negatively correlated). In this case, interpolation according to 1

2 (ki +kj)
has the effect of producing a distorted (if −1 < m < 0) or inverted (if m < −1) version of ki. Even
worse, if m = −1 it produces a subfilter that (approximately) kills its inputs. By scaling ki by m

prior to merging, we prevent cancellation-based issues like these from occurring.

To take these observations into account, we encode the differences in scale via an n × Nn slope matrix S

whose (i, j)-entry Si,j is given by the slope of the linear regression fitting the num_samples data points
(ki(x), kj(x)). We then multiply this matrix entry-wise with the absolute value of the correlation matrix
P to obtain a matrix C with (i, j)-entry given by Ci,j = |Pi,j |Si,j , which we dub the coefficient matrix.
The idea is that if ki, kj ∈ K are highly correlated, then Ci,j is essentially just the scale factor that we
wish to multiply by prior to merging. On the other hand, if ki and kj are not correlated, then Ci,j is
approximately zero. In other words, using the entries of C as merging coefficients provides us with a
natural way of implementing the above observations simultaneously. With this in mind, we define the
merged subfilters kmerged

i according to

kmerged
1 := 1

Z1

Nn∑
j=1

C1,jkj , . . . , kmerged
n := 1

Zn

Nn∑
j=1

Cn,jkj , (16)

where the Zi =
∑Nn

j=1 Ci,j are normalization constants that render each combination convex. Note that
we can absorb these constants into the coefficient matrix C, at which point C becomes row-stochastic.
Moreover, we note that since k

(m)
i = Ci,· · K, the merging process can be summarized more succinctly as

Kmerged =

kmerged
1

...
kmerged

n

 = C · K. (17)

Aubry, Bona-Landry Page 9

4.5. Sampling Distribution
Through iterative denoising, individual diffusion models learn to generate approximate samples from
the distribution underlying their training datasets. A merged model, on the other hand, will sample
according to some amalgamation of the sampling distributions of its constituents that depends on the
merging process, and it is not at all clear what this sampling distribution looks like in general. A
natural question to ask is thus: for models merged according to the FeatureFusion framework, what
distribution does the merged model Mmerged sample from, and can we express this in terms of the
sampling distributions of the constituent models M1, . . . , MN ?

To answer this question, we note that by (4) the sampling distribution of a diffusion model is uniquely
determined by the score function it approximates, as this governs the distribution of the latent xt at each
timestep. In particular, if we can show that the score function ∇ log p(m) of the merged model satisfies
an identity of the form

∇ log p
(m)
t (x) = ∇ log F (p(1)

t (x), . . . , p
(N)
t (x)), (18)

then it will follow that the sampling distribution p
(m)
0 of the merged model is given by

p
(m)
0 (x) = Z−1F (p(1)

0 (x), . . . , p
(N)
0 (x)). (19)

A reasonable strategy to this effect is to relate the output of the merged U-Net to those of its constituents.
This is because the left-hand side of (18) is, by definition, approximately the output sθm(t, x) of the
merged U-Net, and likewise the U-Net underlying model i satisfies sθi(t, x) ≈ ∇ log p

(i)
t (x) for each

i = 1, . . . , N . With this in mind, we recall from Section 4.4 that at each layer ℓ of merged U-Net, the
output features fmerged

ℓ satisfy

fmerged
ℓ = Cℓf

cat
ℓ , (20)

where f cat
ℓ denotes the concatenated vector (f1

ℓ , . . . , fN
ℓ) of constituent features, and Cℓ the coefficient

matrix at layer ℓ. This tells us that we can relate the output of sθm(t, x) to those of the sθi
(t, x) via the

product U =
∏

ℓ Cℓ, and using this fact we obtain the following:

Proposition 4.5.1. If p
(1)
0 , . . . , p

(N)
0 : X ⊂ Rd → [0, 1] denote the sampling distributions of the

constituent models M1, . . . , MN , then the merged model Mmerged (approximately) generates samples
from

p
(m)
0 (x) = Z−1 exp

∫
Rd

log
N∏

j=1

(
p

(j)
0 (y)

)Kj(x−y)
dy

 , (21)

where the kernels Kj : Rd → R are defined by

Kj(x) = F−1
[

ξ⊤Ujξ

|ξ|2

]
(x), (22)

and Uj is the square minor of the matrix U corresponding to columns (j − 1)d + 1 through jd.

Proof. By the remarks of the preceding paragraph, we have that

∇ log p
(m)
t (x) ≈ sθm(t, x) =

N∑
j=1

Ujsθj
(t, x) ≈

N∑
j=1

Uj∇ log p
(j)
t (x). (23)

By taking the Fourier transform (component-wise) of both sides, we thus obtain that

F
[
log p

(m)
t

]
(ξ) · ξ ≈

N∑
j=1

F
[
log p

(j)
t

]
(ξ) · (Ujξ). (24)

Aubry, Bona-Landry Page 10

By now taking the inner product of both sides of this identity with ξ, it follows that for all nonzero
ξ ∈ Rd we have that

F
[
log p

(m)
t

]
(ξ) ≈

N∑
j=1

F
[
log p

(j)
t

]
(ξ) · ξ⊤Ujξ

|ξ|2
. (25)

If we now define Kj : Rn → R by

Kj(x) := F−1
[

ξ⊤Ujξ

|ξ|2

]
(x), (26)

then it follows via Fourier inversion that

log p
(m)
t (x) ≈

N∑
j=1

(log p
(j)
t ∗ Kj)(x) =

N∑
j=1

∫
Rd

Kj(x − y) log p
(j)
t (y)dy =

∫
Rd

log
N∏

j=1

(
p

(j)
t (y)

)Kj(x−y)
dy

(27)

and hence

p
(m)
0 (x) ≈ Z−1 exp

∫
Rd

log
N∏

j=1

(
p

(j)
0 (y)

)Kj(x−y)
dy

 , (28)

as claimed.

Notice that if each Uj is 1
n Id×d (as it would be in the case of Diffusion Soup), then

Kj(x) = 1
n

F−1
[

ξ⊤ξ

|ξ|2

]
(x) = 1

n
δ(x) (29)

and hence the sampling distribution of the merged model reduces to

1
Z exp

N∑

j=1

1
n

∫
Rd

δ(x − y) log p
(j)
0 (y)dy

 = 1
Z exp

N∑

j=1
log

(
p

(j)
0 (x)

)1/n

dy

 = 1
Z

N∏
j=1

(
p

(j)
0 (x)

)1/n

,

(30)

which is consistent with the results of [3]. One can interpret (21) as an average of spatially weighted
geometric means, with the weights Kj(x − y) governing how much the density of model j at y influences
the density of the merged model at x.

4.6. Through the Lens of Optimal Transport
Recall that if X is a Polish space and µ and ν are probability distributions on X, then a mapping
T : X → X is said to be a transport map (between µ and ν) if T pushes µ forward to ν, that is, if
T#µ = ν. More generally, a transport plan between µ and ν is a measure γ(dx, dy) on the product space
X × X with marginal distributions given by µ and ν. A transport map T is said to be optimal with
respect to a given cost function c : X × X → R≥0 if it satisfies the optimization problem

T = argmin
S:S#µ=ν

∫
X

c(x, S(x))µ(dx). (31)

Similarly, a transport plan γ is said to be optimal if it satisfies an analogous optimization problem for
the quantity

∫
X×X

c(x, y)γ(dx, dy).

Another natural question to ask is whether the FeatureFusion framework can be formulated in some way
through the lens of optimal transport theory. After all, given that the merging process is rooted in using

Aubry, Bona-Landry Page 11

Base SD1.4 Ghibli Pokemon Sketch Ghibli + Pokemon Ghibli + Sketch Pokemon + Sketch Base + Sketch
P

ro
m

p
t

1
P

ro
m

p
t

2
P

ro
m

p
t

3

Figure 3: Stylistic-base Qualitative Results. Sample outputs of the base SD1.4 model, the stylistic
specialist models, and various pairs of merged models. We utilize the following prompts:
Prompt 1: A young adventurer with a backpack standing at the edge of a magical forest.
Prompt 2: A small creature discovering a mysterious glowing artifact in a cave.
Prompt 3: An ancient tree spirit guardian with glowing eyes in a misty bamboo grove.

feature similarities to “prune redundancies” within and across the models, it is intuitive that the result
should be “optimal” in some sense. One step in this direction is provided by the concluding remarks of
Section 4.4, which imply that

Proposition 4.6.1. Let µ denote the joint distribution of the features f1
ℓ , . . . , fN

ℓ ∈ X ⊂ Rd of the
constituent models at layer ℓ, and let ν denote the distribution of the features fmerged

ℓ of the merged
model at layer ℓ. Then the coefficient matrix Cℓ at layer ℓ is a transport map between µ and ν in the
sense that (Cℓ)#µ = ν.

Having established this, there is a sense in which Cℓ can be framed as an optimal transport mapping to
this effect:

Proposition 4.6.2. The coefficient matrix Cℓ at layer ℓ satisfies the optimal transport problem

Cℓ = argmin
T :T#µ=ν

∫
XN

c(x, Tx)µ(dx) = argmin
T :T#µ=ν

Ex∼µ[c(x, Tx)] (32)

with respect to the cost function

c : XN × X → R≥0, c(x, y) = |y − Cℓx|2.

Of course, one might object that this is “cheating” since we have defined the cost function c here so
as to be trivially minimized by Cℓ (in the sense that c(x, Cℓx) ≡ 0). This is a fair point, and for this
reason it is natural to wonder whether there is a more “natural” (or at least non-circular) cost function
with respect to which Cℓ is an optimal transport map between µ and ν. The answer is unfortunately
no, since any reasonable choice for such a cost function should not depend on the layer ℓ. But if c were
independent of ℓ then so too would be the solution to (32), and since Cℓ is very much not independent
of ℓ it cannot be the solution in such a case.

Any cost function with respect to which Cℓ is optimal must therefore be “circular” at least in the sense
of depending in some way on the layer ℓ. This, however, is not to say that there is no hope of achieving
a stronger link to optimal transport than Proposition 4.6.2. One potential avenue for further work is
whether there is a natural, layer-independent cost function c with respect to which Cℓ is approximately

Aubry, Bona-Landry Page 12

optimal in the sense of satisfying ∥∥∥∥∥Cℓ − argmin
T :T#µ=ν

Ex∼µ[c(x, Tx)]
∥∥∥∥∥ ≤ ϵℓ (33)

for some error threshold ϵℓ dependent upon ℓ. Something else that may be interesting to explore is
whether (under some fixed cost) ν approximates the Wasserstein barycenter of µ1, . . . , µN with weights
given by the entries of Cℓ.

5. Experiments

5.1. Implementation Details

5.1.1. Datasets

We utilize Pick-a-Pic v1 [11], which is a publicly available dataset accessible via Hugging Face, as the
base dataset for the object-based experiments. This dataset supplies highly diverse human-preference
image-description pairs. Specialist data shards are then produced by searching for pre-defined key words
in the image descriptions and assigning a score to each corresponding image category. The top 1000
images for each category are then split into training and test shards, used to finetune the base model,
in turn producing a collection of specialist models. The categories chosen for this set of experiments
include food, electronics, body parts, animals, text, vehicles, and clothing.

For the stylistic experiments, we instead opt for the FS-COCO dataset [5], which offers freehand sketches
of common objects, and MSCOCO [12], an image corpus of common objects in context.

5.1.2. Benchmarking Metrics

To systematically evaluate the performance of each model, we employ widely used image-prompt metrics
that assess both image quality and alignment with textual descriptions:

• Image Reward [23]. A learned metric designed to assess image quality and relevance by modeling
human aesthetic and semantic preferences. It provides a scalar score indicating how well an image
aligns with human judgments of desirability.

• CLIP Score [9]. A reference-free metric that quantifies image-text alignment by computing the
cosine similarity between CLIP-encoded image and text representations. Higher scores indicate
stronger semantic correspondence between the generated image and its associated prompt.

5.1.3. Models

As delineated above, to quantify the effectiveness of FeatureFusion, we train a collection of specialist
diffusion models on both object-based and stylistic-based data shards. We finetuned the CompVis/stable-
diffusion-v1-4 model [16] on the domain-specific data using a memory-optimized implementation. The
process involved training only the UNet component while keeping the text encoder and VAE frozen to
reduce computational requirements. Images were resized to 512×512 pixels and normalized before being
encoded into the latent space. Training was conducted for 3 epochs on 1000 data samples using AdamW
optimizer with a learning rate of 1 × 10−6 and a cosine learning rate schedule with warmup. To manage
memory constraints, we implemented gradient accumulation with 2 steps, attention slicing, VAE slicing,
and gradient checkpointing. The model was trained using MSE loss between predicted and actual noise
in the standard diffusion denoising objective.

5.1.4. Computational Resources

The computational resources for this project included NVIDIA T4 and RTX 6000 GPUs, accessed through
both the University of Toronto Computer Science department and Vector Institute GPU clusters. These

Aubry, Bona-Landry Page 13

GPU resources were essential for handling the memory-intensive nature of diffusion model training, even
with our optimized implementation that focused on reducing VRAM requirements.

5.2. FeatureFusion

5.2.1. Results

In this section, we present the main results from our proposed merging algorithm. Qualitative outputs
and comparisons for the object-based specialists can be found in Figure 2. Similar outputs for the
stylistic-based specialists are available in Figure 3, with each pair of constituent models being merged
and presented. Finally, Figure ?? presents the quantitative benchmark performance for each of the
object-based specialists, as well as the base SD1.4 model and the FeatureFusion merge of all seven
specialists.

The object-based specialists show clear improvement in image quality compared to the base model (Figure
2). In particular, most adversarial artifacts are mitigated with the specialist models, and the prompt-
image semantic alignment is visually far stronger. This is made particularly clear with the vehicles
specialist. We also present quantified performance benchmarks for each specialist model on all object
specialist tasks.

It is clear from Figure 3 that the stylistic base specialists visually fall into their niche artistic category.
We additionally present pair-wise merged models between the different specialists. While merging of
artistic styles can be difficult to parse and interpret, our merged models are able to effectively capture
the style of the constituent models in a single image. This is most abundantly clear in the Ghibli +
Pokemon merge, as well as the base+sketch model.

Figure 4: Object-based Benchmarks. Benchmark scores for the specialist models on each object-
based task, as well as the performance of the base SD1.4 moel, and the FeatureFusion merge of the seven
specialists. Each reported score is computed using the ImageReward score. See Section 5.1.2.

5.2.2. Computational Overhead

Let M denote the memory footprint (i.e. number of parameters) and T the forward-pass time complexity
(i.e. number of diffusion steps) of the constituent models M1, . . . , MN . Since the merged model M

Aubry, Bona-Landry Page 14

produced by FeatureFusion has the same architecture as the constituents, the O(M) memory and O(T)
inference complexities are preserved. Specifically, producing the coefficient matrices is a fixed O(1)
per-layer cost. Note that this outperforms ensembling methods [4, 25, 26], which have memory and
forward-pass complexities of O(nM) and O(T), respectively. This also matches the optimal O(M) and
O(T) complexities produced by the Diffusion Soup and ZipIt! frameworks [3, 21].

5.2.3. Unlearning

We’ve seen in Section 4.4 that, at each layer ℓ, the constituent model layers are merged through the
coefficient matrix C. In particular, we have that

Wmerged = C

 W1
...

WN

 and Kmerged = C

 K1
...

KN

 (34)

for linear and convolutional layers, respectively, where W is notation for a weight matrix and K a kernel.
Equivalently, we can write

Wmerged =
N∑

i=1
CiWi and Kmerged =

N∑
i=1

CiKi (35)

for suitable square minors Ci of C. It follows from this that if we wish to remove model j from the merge
(i.e. unlearn the data shard covered by this model), then this is just as easy as merging. Specifically, in
the case of linear layers, we simply need to re-define

W̃merged := C̃

W1
...

Wj−1
Wj+1

...
WN

=

N∑
i=1,i̸=j

C̃iWi (36)

where C̃ is simply the coefficient matrix C, but with the minor Cj removed and the rows re-normalized
so as to maintain row-stochasticity. For convolutional layers the process is exactly the same (just replace
all the W ’s with K’s). Doing this layer-by-layer results in a new merged model from which the influence
from model j has been removed.

6. Discussion
Our proposed FeatureFusion framework offers a new perspective on merging diffusion models by extend-
ing feature-correlation-based merging to convolutional layers. By constructing convex combinations of
filters weighted by functional similarity and scale, FeatureFusion allows merging across different tasks
while maintaining the computational efficiency of a single model.

Strengths of the framework include its theoretical grounding, its applicability to models trained on diverse
tasks, and its minimal inference overhead. Additionally, we provided a formal description of the sampling
distribution of the merged model and connected our method to optimal transport theory.

Limitations include the current reliance on identical architectures across models and sensitivity to the
quality of sample inputs used for estimating feature correlations. Extending FeatureFusion to handle
different architectures or improving its robustness to input data variations are promising directions for
future work.

Open problems include:

Aubry, Bona-Landry Page 15

• Extending the method to transformers and other architectures.

• Designing reference models that enable merging even when constituent models differ significantly.

• Exploring the properties of the merged sampling distributions in more detail.

By offering a more general approach to merging, we hope FeatureFusion paves the way for new methods
of model composition, modular specialization, and efficient model reuse.

6.1. Reproducibility Statement
Our code is available in our open-sourced Github repository, which was directly used to produce the
results presented in this paper. Additionally, each of our specialist models, as well as the cumulative
merged model, have been made available on the Hugging Face Hub, and can be found here.

6.2. Beyond Same Architecture
While much of the prior work on model merging assumes that the constituent models share the same
architecture (e.g., identical layer structures and dimensions), practical scenarios often involve models
with both different initializations and different architectures. Extending merging methods to this more
general case requires additional considerations.

One approach is to introduce a reference model that acts as a strict superset of the constituent
architectures. The reference model must be flexible enough to accommodate the different structures
of each input model. This can be achieved by:

• Layer Generalization: For layers with similar functions but different configurations (e.g.,
convolutional layers with different kernel sizes or transformer layers with varying head counts),
design reference layers that generalize the operations. This might involve dynamically adjusting
parameters like kernel size, number of channels, or attention heads.

• Embedding and Projection: When dimensionalities differ (e.g., different hidden sizes), use
learned or fixed projection matrices to embed smaller models into the larger reference space. This
allows all constituent models to be "lifted" into a common space where merging operations like
averaging or alignment are possible.

• Sparse Initialization: Populate the reference model sparsely by placing weights from constituent
models into corresponding regions, leaving uninitialized areas as zeros or learnable parameters.
After merging, a fine-tuning phase can densify and optimize the resulting model.

• Shared Representations: Align similar modules across different architectures by learning a
shared representation (e.g., matching feature maps or attention patterns) before merging weights.
This alignment ensures the merged model respects the semantics learned by each constituent.

This framework introduces several challenges, such as ensuring that the reference model remains efficient,
defining a meaningful matching between layers, and preserving performance from each original model.
However, it offers a promising pathway toward merging models trained independently with different
design choices, potentially enabling more powerful and generalized systems.

7. Conclusion
In this work, we introduced FeatureFusion, a new framework for merging diffusion models trained on
different tasks without requiring additional training or inference overhead. Building on the idea of
merging based on feature correlations, we extended this perspective to convolutional layers by treating
filters as "big neurons" and constructing convex combinations weighted by functional similarity and scale.

Unlike existing methods that primarily interpolate weights or merge only pairwise based on correlation,
FeatureFusion leverages all correlations across models, leading to a unified merged model that maintains

https://github.com/murdock-aubry/diffusion-merge
https://huggingface.co/murdockaubry

Aubry, Bona-Landry Page 16

the capabilities of the specialists. Through theoretical analysis, we characterized the sampling distribu-
tion of the merged model and established connections to optimal transport theory, offering a principled
view of model merging.

Since our goal was to introduce a broader merging framework rather than outperform existing methods,
we focused on theoretical development and qualitative validation over direct benchmark comparisons.
Rather than aiming to outperform prior approaches such as Diffusion Soup or ZipIt! in a competitive
benchmarking sense, our work provides a broader and more generalizable framework for integrating
specialized models. We hope that FeatureFusion inspires further research into merging models with
different architectures, tasks, or initializations under a unified theoretical lens.

Future directions include scaling to larger diffusion architectures, exploring the merging of transformer-
based models, and extending the approach to non-identical architectures by constructing a common
superset.

Aubry, Bona-Landry Page 17

References
[1] Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models

modulo permutation symmetries, 2023.

[2] Brian D. O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[3] Benjamin Biggs, Arjun Seshadri, Yang Zou, Achin Jain, Aditya Golatkar, Yusheng Xie, Alessandro
Achille, Ashwin Swaminathan, and Stefano Soatto. Diffusion soup: Model merging for text-to-image
diffusion models, 2024.

[4] Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding mixture
of experts in deep learning, 2022.

[5] Pinaki Nath Chowdhury, Aneeshan Sain, Ayan Kumar Bhunia, Tao Xiang, Yulia Gryaditskaya, and
Yi-Zhe Song. Fs-coco: Towards understanding of freehand sketches of common objects in context,
2022.

[6] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021.

[7] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks, 2022.

[8] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns, 2018.

[9] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning, 2022.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

[11] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation, 2023.

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014.

[13] Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2022.

[14] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023.

[15] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation, 2021.

[16] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, June 2022.

[17] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022.

[18] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.

[19] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022.

[20] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021.

Aubry, Bona-Landry Page 18

[21] George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman.
Zipit! merging models from different tasks without training, 2024.

[22] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time, 2022.

[23] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation, 2023.

[24] Zhengqi Xu, Ke Yuan, Huiqiong Wang, Yong Wang, Mingli Song, and Jie Song. Training-free
pretrained model merging, 2024.

[25] Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, and Ping Luo. Raphael:
Text-to-image generation via large mixture of diffusion paths, 2024.

[26] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022.

	Introduction
	Background
	Diffusion Models
	Stable Diffusion

	Related Work
	ZipIt! stoica2024zipitmergingmodelsdifferent
	Diffusion Soup biggs2024diffusionsoupmodelmerging

	New Approach: FeatureFusion
	Overview
	How do we merge convolutional layers?
	How do we determine functional similarity?
	How do we then produce the merged filter?
	Sampling Distribution
	Through the Lens of Optimal Transport

	Experiments
	Implementation Details
	Datasets
	Benchmarking Metrics
	Models
	Computational Resources

	FeatureFusion
	Results
	Computational Overhead
	Unlearning

	Discussion
	Reproducibility Statement
	Beyond Same Architecture

	Conclusion

