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Experiments in multihead self-attention dynamics based on Geshkovski et al. [2] and their code.
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1 The Emergence of Clusters in Self-Attention Dynamics

Transformer based architectures have widespread success throughout all areas of deep learning and recently in
large language modelling with the development of ChatGPT. The essential component of the transformer
architecture is the self-attention mechanism, allowing a model to learn and distinguish important characteristics of
input data. The self attention model lacks a theoretical underpinning to explain its robust performance, withThe
Emergence of Clusters in Self-Attention Dynamics by Geshkovski et al. [2] being a major contribution towards
establishing a rigorous description. Tokens are viewed as interacting particles that are advanced by the self
attention matrix, allowing the problem to be placed in a dynamical context to derive limiting geometric
representations of tokens.

1.1 Mathematical Setting

This work describes the attention mechanism through discrete time dynamics by viewing passage through layers
as a time variable. In ResNets, the passage through t-th parametrized layer fθ is viewed as

ẋ(t) = fθ(x(t))

The residual connection modifies the original input with x(t) + fθ(x(t)) = x(t) + ẋ(t). In self-attention, the
parametrized layer acts on n-tokens x(t) = (x1(t), . . . , xn(t)) with

ẋ(t) = (P(t)V) · x(t) ẋi(t) =

n∑
j=1

Pij(t)Vxj(t) (1)

where V is the fixed value matrix which is independent of time. The matrix P(t) is the stochastic self-attention
matrix depending on keys K and queries Q:

Pij(t) =
e⟨Qxi(t),Kxj(t)⟩∑n
ℓ=1 e

⟨Qxi(t),Kxℓ(t)⟩
(i, j) ∈ [n]2

Q,K,V are fixed and independent of time and fixed. This corresponds to weight sharing during repeated
applications of the same self-attention matrix throughout the transformer. These dynamics do not incorporate
other essential features of the transformer including multiple heads, feedforward layers, and layer-normalization.
The paper describes the limiting geometric behaviour of tokens xi(t) in (1) and the main contributions are
conditions for various forms of clustering to emerge. Under assumptions on Q,K,V and as t → ∞ the geometric
representations of x(t) the clustering to various objects including hyperplanes and polytopes is described below:

V Q,K Limiting Representations
V = −I Q = K = I cluster at origin
V = I QTK > 0 vertices of convex polytope
λ1(V) > 0 ⟨Qφ1,Kφ1⟩ > 0 3 parallel hyperplanes∥∥V2x

∥∥ ⩾ ∥Vx∥2 QTK > 0 product of polytope and subspaces

The emergence of this geometry confirms empirical results about leading tokens in the original Attention Is All You
Need by Vaswani et al. [4]. An early theorem from the paper builds on past results to mitigate quadratic
complexity and is later applied to the ALBERT transformer weights.

1.2 Theorems and Examples

One of the theorems in the paper provides a result about the low-rank asymptotic form of the self-attnetion matrix.

Theorem 1 (Low-rank asymptotics). Let each token be one-dimensional xi(t) ∈ R and (Q,K,V) satisfy V > 0,
QKT > 0. For any (x1(0), . . . , xn(0)), there is some low rank matrix P∗ such that P(t) → P∗ as t → ∞.
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Figure 1: An illustration of asymptotics implied by Theorem 1 for P(t) with n = 40 tokens with Q = K = V = 1.

Another theorem guarantees clustering towards vertices of convex polytopes. The norm of tokens xi(t) typically
diverges. To account for this, zi(t) = e−tVxi(t) are rescaled, motivated by the solution to
ẏ(t) = Vy(t) =⇒ y(t) = etVy(0).

Theorem 2 (Convex polytope asymptotics). Suppose V = I andQTK > 0. Consider any initial sequence of tokens
zi(t) ∈ Rd evolving by

żi(t) =

n∑
j=1

(
e⟨QetVzi(t),KetVzj(t)⟩∑n
ℓ=1 e

⟨QetVzi(t),KetVzℓ(t)⟩

)
V(zj(t) − zi(t)) (2)

There exists convex polytope K ⊂ Rd such that for any u, zi(t) → 0 or zi(t) → ∂K (i.e. a corner) as t → ∞.

Figure 2: An illustration of Theorem 2 with n = 40 tokens with Q = K = I3.

1.3 Themes

These results augment multiple research topics and MAT1510 course themes.

1. Analysis of attention-based models. The widespread application of transformers has generated major
research interest in the significance of self-attention. The new interacting particle system perspective is
promising for further analyses of self-attention and improvements to transformer-based architectures.

2. Importance of skip connections. Dong, Cordonnier, and Loukas [1] showed that a lack of skip
connections in self-attention yielded trivialized dynamics and a single cluster at the origin.

3. Quadratic complexity of Transformers. A major computational challenge is the quadratic complexity of
transformers: each self-attention layer has n2 products ⟨Qxi,Kxi⟩. Past works have imposed low-rankness
in self-attention (sparse attention) [5] in order to mitigate the quadratic cost. The transformer model
ALBERT uses weight sharing throughout layers with Geshkovski et al. [2] presenting impact of parameter
reduction dynamics.

4. Neural collapse. The limiting clustered representations and low-rankness of the self-attention matrix share
many similarities with the neural collapse phenomenon [3]. The limiting simplex structure provides insight
into how self-attention separates different classes.

5. Clustering in interacting particle systems. The dynamics presented in this paper are very similar to
other non-linear systems modeling clustering. This work is a first application of methods from dynamical
systems to rigorously describe trained transformer dynamics.
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2 Experiments in Multihead Self-Attention

Geshkovski et al. [2] present a mathematical framework for studying clustering of geometric representations in
transformers. The contribution provides existence results for geometric clustering under theoretical conditions on
the dynamics and does not address important practical considerations in transformer models.

1. Trained weights. The use of randomly initialized weights does not elucidate possible data representations
induced by clustering: dynamics induced by trained weights may provide further insight into self-attention.

2. Multi-head self attention. Multi-head self-attention is essential for large models. The number of heads and
their effect on dynamics, clustering patterns and practical considerations require further investigations

3. Token initialization. Geshkovski et al. [2] demonstrate existence of clustering patterns for any token
initialization. The effect of different token initialization schemes is not emphasized, meanwhile embeddings
are trained and are important for self-attention.

2.1 ALBERT Transformer

The ALBERT transformer uses weight sharing across transformer blocks in a BERT architecture. Due to repetitions
of same-weight layers, Geshkovski et al. [2] propose that the dynamics of this model are iterated and may
demonstrate emergent clustering behaviour.

2.1.1 Single-head Dynamics

The maximal eigenvalue on head 5 of ALBERT-xlarge-v2 satisfies the conditions for Theorem 5.2 in [2] (see
Figure 3a). The weightsWQ and WK for this head are passed and the dynamics are iterated in Figure 3b with the
same dynamical scheme during which a single cluster emerges. Further analyis of the eigenvalues suggests the
emergence of a singular non-zero component during the evolution of self-attention dynamics. The emergence of
leading eigenvalues in the self-attention matrix reflects the clustering to a single point. While this is an initial
experiment using trained weights, single-head dynamics do not represent the full ALBERT token dynamics.

(a) (b)

Figure 3: ALBERT single-head dynamics. (a) satisfies conditions of 5.2, while (b) is the PCA of iterated dynamics
with the weight matrices of head 5 of ALBERT-xlarge-v2. Dynamics are implemented with RK-4 with ∆t = 0.1,
T = 5, blue points at t = 0, orange points at t = 25, green points at t = 50. The final green cluster is not centered
at the origin.
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(a) (b)

Figure 4: ALBERT single-head dynamics. Eigenvalues of the attention matrix and their norms during self-attention
dynamics with weight matrices of head 5 in ALBERT-xlarge-v2.

2.1.2 Multi-head Dynamics

Token dynamics are implemented with ALBERT-xlarge-v2 weights with the evolution governed by

ẋ(t) =

16∑
h=1

Ph(t)x(t)

where Ph(t) is the self-attention matrix corresponding to the h-head weights. Viewed from the usual notation of
multi-head self attention, we assumeWO =

[
I I · · · I

]T , that value weightsWVh
are also I. The trained

weight multi-head dynamics are applied to various token initializations:

(x1(t), . . . , xn(t))

where xk(t) ∈ Rd for d the embedding dimension.

1. Randomly initialized embedding. xk(t) ∈ [−5, 5]d are uniformly sampled similarly to [2] for various n.
As n increases, dynamics display more complicated clustering patterns with greater stability at cluster
points. For small n a single final cluster. As n increases, multiple distinct clusters emerge, and may slowly
collapse to a single point. As n increases further, the slow collapse becomes rarer and the distinct clusters
appear stable.

2. Paragraph embedding. Various paragraphs are embedded and used for the token initialization x(0).
Dynamics vary widely depending on the paragraph used, when clustering emerges it centres at one of the
vectors present in the initial embedding x(0): i.e. around one of the xk(0).

2.2 Further Multihead Experiments

Similar experiments to [2] with random weight initializations are repeated for the multihead context. The number
of initialized tokens and number of heads in multihead blocks are varied and the effect on the geometry and speed
of clustering is studied.
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(a) t = 1 (b) t = 7 (c) t = 15

Figure 5: PCA of ALBERT multi-head dynamics. Clustering behaviour of n = 30 randomly initialized tokens at
t ∈ {1, 7, 15} iterations of the dynamics.

(a) t = 1 (b) t = 10 (c) t = 20

Figure 6: PCA of ALBERT multi-head dynamics. Clustering behaviour of n = 100 randomly initialized tokens at
t ∈ {1, 10, 20} iterations of the dynamics.

3 Justification

3.1 Maximal eigenvalue of multi-head self-attention matrix

Proposition 1. Let P(t) =
(∑H

h=1 Ph(t)
)
where Ph(t) is a single-head self-attention matrix with weights for

head h where 1 ⩽ h ⩽ H and some t. The maximal norm of an eigenvalue corresponding to P(t) is H and it is
attained.

Proof. Ph(t) is stochastic since it is square and every row sums to 1. The row-wise sum of terms of
∑H

h=1 Ph(t) is
therefore H. By rescaling we may express P(t) = H · S(t) where S(t) is stochastic. Each eigenvalue λ of S(t)
satisfies |λ| ⩽ 1 and there exists at least one λ0 = 1. The scaling to P(t) implies that every λ ′ of P(t) satisfies
|λ ′| ⩽ H and there exists λ ′

0 = H.
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4 Github Notes

Documentation for the important piece of code that we may or may not need. Overall, code is certainly digestible.

• albert eigenval.ipynb: Used for analyzing the eigenvalues of each head of pre-trained model.

1. albert get BV: Takes as input the pre-trained ALBERT model and an index i specifying the
attention head.
(a) Grabs query, key, value matrices Q,K,V from trained model, as well as dense matrix D.
(b) Picks out submatrices Qi = Q(:,ki : k(i+ 1)), similarly for Ki,Vi, where k is the head size. With

Vi matrix, this is immbedded in a larger d× d matrix, maintaining positional encoding, where d is
the size of the hidden layer.

(c) Set B = 1
2
√
k
(QiV

T
i ) + ViQ

T
i and V = (ViD)T

2. plot B spectra: Would be used to produce plot similar to figure 10 but for matrix B.
3. plot V spectra: Produced figure 10 using the eigenvalues of the matrix V from
albert get BV.

• clustering-Tformers.py: Preforms main experiments

1. get dynamics. Denote f(z). Returns the dynamics z ′(t) = (zi(t))
n
i=1 at some time-step t. Takes as

input current values of z, attention matrix, value matrix V , and index i specifying token zi. In
particular, computes

z ′i(t) =
∑
j

Pij(t)V(zj(t) − zi(t)) (3)

2. transformer. Solves the n systems

żi(t) =
∑
j

Pij(t)V(zi(t) − zj(t)) (4)

via 4th order Runge-Kutta on t ∈ [0, T ].
(a) Calculates attention matrix

Pij(t) =
e⟨QetVzi(t),KetVzj(t)⟩∑n

ℓ=1 e
⟨Qxi(t),Kxℓ(t)⟩

(i, j) ∈ [n]2 (5)

at each time step {ti}
m
i=1, and stores in 3-dimensional array

(b) Computes constants

k1 = δf(zi(tj)) k2 = δf(zi(tj) + k1/2) k3 = δtf(zi(tj) + k2/2) k4 = δtf(zi(tj) + k3) (6)

where δ = ti+1 − ti, and set

zi(tj+1) = zi(t) +
1
6(k1 + 2k2 + 2k3 + k4) (7)

Iterates over above steps for all time steps and each token zi.
3. visuals. Just a function for generating the visuals, provided the desired type of geometry. Their

automation process here is very nice, we should try to implement something like this if we end up
observing a variety of geometries

• conv-coord.py: Generates figure 7b.
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• cupy-Tform: Algorithm which provides data to diverge-coord.py, displying the diverging
clusters in the case where V is not positive-definite (i.e. has negative eigenvalues)

1. Generate some random sparse square matrix V of size d, compute eigenvalues and eigenvectors, and
set V = TDT−1 where T is matrix of eigenvectors of V and D diagonal matrix of eigenvalues.
Artificially making random Hermitian matrix?

2. Function get dynamics same as described in clustering-Tformers.py.
3. Set initial z(0) = (zi(0)) values to be Tx⃗0 where T is the matrix of eigenvectors of (new) V .
4. Solve for dynamics of z using the 4th order Runge-Kutta method described in
clustering-Tformers.py

• diverge-coord.py: Used to generate figure 15.

• leaders.py: Used to generate figure 4.

• lowrank-attention.py: Preforms experiment in section 2 of paper, figure 3, 11, 12.
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