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Table 1. Summary of properties observed during each phase.

PHASE LINEAR EQUISPACED ALIGNED CONFIDENT

THOUGHT LESS LESS MORE LESS

FIXATION MORE MORE LESS MORE

Abstract

Large Language Models (LLMs) have made sig-
nificant strides in natural language processing,
and a precise understanding of the internal mecha-
nisms driving their success is essential. We regard
LLMs as discrete, coupled, nonlinear, dynami-
cal systems in high dimensions. This perspective
motivates tracing the trajectories of individual to-
kens as they pass through transformer blocks, and
linearizing, along these trajectories, the system
through their Jacobian matrices. These investiga-
tions uncover two distinct operational stages:

Thought. An exploratory phase, occurring in
shallower layers where the model consid-
ers various possibilities for the next token.
This stage is characterized by coordinated
processing across layers, gradual expansion
away from the origin through less linear tra-
jectories, and low variation in confidence in
the next token prediction.

Fixation. A more focused state, occurring in the
deeper layers, akin to a fixation on a spe-
cific outcome or solution. This phase is dis-
tinguished by linear token trajectories at an
increased velocity, reduced coordination in
processing between layers, and highly vari-
able prediction certainty.

Collectively, these findings reinforce the view-
point of LLMs as dynamical systems and reveal a
remarkable level of regularity that has previously
been overlooked. These results lay the ground-
work towards further transparency, explainability,
and improvements in LLMs.

1. Introduction
Large language models (LLMs), as exemplified by BERT
and GPT-series (Devlin et al., 2019; Brown et al., 2020),
have revolutionized the field of natural language process-
ing through their adoption of the transformer architecture
(Vaswani et al., 2017). Despite their widespread success,
the internal mechanisms that underpin their performance
are not fully understood.

Previous works viewed certain types of deep networks as
implementing discrete, nonlinear dynamical systems, oper-
ating in high dimensions (Greff et al., 2016; Papyan et al.,
2017; Ebski et al., 2018; Chen et al., 2018; Bai et al., 2019;
Rothauge et al., 2019; Li & Papyan, 2023; Gai & Zhang,
2021; Haber & Ruthotto, 2017; Ee, 2017). The term discrete
reflects the network’s finite depth; nonlinear refers to the
model’s nonlinear components; and dynamical is due to the
residual connections spanning various layers.

In this work, we view LLMs as being coupled dynamical
systems, due to the interdependent token trajectories en-
abled by self-attention. Adopting this perspective motivates
us to trace the dynamics of individual tokens as they traverse
through the numerous transformer blocks, and to linearize
the system through Jacobian matrices along their trajectory.
This investigation reveals two distinct operational phases,
Thought and Fixation, characterized by properties summa-
rized in Table 1.

1.1. Thought Phase

Prevalent in the shallower transformer blocks, this phase is
characterized by:

Intuitively. An exploratory state where the LLM weighs
different possibilities for the next token without defini-
tive commitment. Representations appear to move
erratically and indecisively, mirroring the process of
thinking.

Algebraically. Coordinated processing across depth, as in-
dicated by aligned top left and right singular vectors of
several consecutive Residual Jacobians.

Geometrically. Less linear token trajectories with a grad-
ual distancing from the origin.

Probabilistically. Comparable levels of confidence across

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Picking an LLM’s Brain: Thought and Fixation in Hidden Representations

various prompts in predicting the next token.

1.2. Fixation Phase

Occurring in deeper transformer blocks, this phase is distin-
guished by:

Intuitively. Transitioning to a more focused, persistent
mode, akin to a fixation on a particular outcome or
solution. Representations move in a determined and
focused manner, indicative of a strong conviction and
decisive decision-making process.

Algebraically. Decreased alignment in Residual Jacobians’
top singular vectors, signifying less coordinated pro-
cessing at these depths.

Geometrically. Direct, linear token trajectories, accompa-
nied by uniformly spaced embeddings.

Probabilistically. High variability and increased confi-
dence in predicting the subsequent token.

1.3. Residual Alignment

Our investigation draws inspiration from a recent study by
Li & Papyan (2023) on Residual Networks (ResNets) (He
et al., 2016), which uncovered a phenomenon they termed
Residual Alignment (RA). This phenomenon is marked by
several distinct characteristics which include: linear trajec-
tories in layer-wise progression, equispaced positioning of
hidden representations, and aligned top left and right sin-
gular vectors in the linearizations of residual blocks across
depths.

Our research takes builds on this phenomenon by contrasting
these findings in ResNets with the patterns seen in LLMs.
Through this approach, we aim to enrich the overall un-
derstanding of deep learning models, particularly in their
function as discrete, nonlinear dynamical systems operating
within high-dimensional spaces.

2. Background on Large Language Models
In the input layer, l = 0, textual prompts undergo tok-
enization and are combined with positional encodings to
create an initial high-dimensional embedding, denoted by
x0
i ∈ Rdmodel for the ith token. When these embeddings are

stacked together, they form a matrix:

X0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Rdmodel×n.

The embeddings then pass through L transformer blocks:

X0 f1
block−−−→ X1 f2

block−−−→ · · ·XL−1 fL
block−−−→ XL.

Here, X l = f l
block(X

l−1) denotes the embeddings after
the lth block, consisting of causal multi-headed attention
(MHA), a feed-forward network (FFN), and normalization

layers (LN) with residual connections:

hl+1(X l) = MHA(LN(X l))

gl+1(X l) = LN(X l + hl+1(X l))

f l+1
block(X

l) = X l + hl+1(X l) + FFN(gl+1(X l)),

where the MHA, LN, FFN are implicitly indexed by layer.
In the final representation, an additional layer normalization
is applied:

fL
block(X

L−1) = LN(XL−1 + hL(XL−1)

+ FFN(gL(XL−1))).

The output XL from the final block fL is passed into a bias-
free linear layer M ∈ Rdvocab×dmodel , with dvocab denoting the
size of the token vocabulary and dmodel is the dimension
of the token embeddings. This layer M computes final-
layer logits for each token embedding, ℓLi = MxL

i . The
prediction for the next token is then determined by selecting
the maximal logit value: argmaxv∈tokens ℓ

L
v,n.

3. Methods
3.1. Suite of Large Language Models

Our empirical study focuses on three LLMs: Llama-2 (Tou-
vron et al., 2023), Falcon (Almazrouei et al., 2023), and
GPT-2 (Radford et al., 2019). These models, provided
through HuggingFace (Wolf et al., 2020), vary in terms
of parameter budgets, number of layers, and hidden dimen-
sions. A summary of the models under consideration is
presented in Table 2 below.

Table 2. Summary of models used for the experiments in this paper.

MODEL PARAMETERS LAYERS (L) DIM. (dMODEL )
LLAMA-2 13 B 40 5120

7 B 32 4096
FALCON 7 B 32 4544
GPT-2 1.5 B 48 1600

774 M 36 1280
355 M 24 1024
117 M 12 768

3.2. Prompt Data

We evaluate these LLMs using prompts of varying length,
ambiguity, and context, sourced from the SQuAD v2.0 QA
dataset (Rajpurkar et al., 2018). The prompts are structured
in a consistent format: (context) + (question) +
"The answer is:". For detailed information, see Ap-
pendix B.1. Post-prompting, we assess the models using
several metrics, detailed in the following subsections.
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Figure 1. Hidden Trajectories in LLMs. Principal components of the trajectories of the hidden representations through various LLMs
(columns, decreasing in model size, see Table 2) in the prompt: What is the capital of France? The capital is.
Top row: all layers. Middle Row: layers in shallower transformer blocks (layers specified above plot). Bottom Row: layers in deeper
transformer blocks (layers specified above plot). Trajectories of each input token (last token ‘is’ is plotted in black) are plotted in latent
space, visualized with a 2-dimension principal component projection. Representations proceed in distinct outward directions, especially in
the second half of transformer blocks (lower row) during which the norm of representations increases, with possible abrupt change in the
last layer (outer points in upper row). A clear direction of movement is visible in each token trajectory.

3.3. Visualization of Trajectories

Each initial embedding x0
i forms the trajectory

x0
i , x

1
i , . . . , x

L
i as it passes through L transformer

blocks. The dynamics in high-dimensional space are
visualized through a 2-dimensional principal component
(PC) projection, PCL, fitted to the last layer embeddings
XL = (xL

1 , x
L
2 , . . . x

L
n). The projected embeddings,

PCL(x
0
i ), PCL(x

1
i ), . . . , PCL(x

L
i ), are plotted for each of

the i = 1, . . . , n trajectories.

3.4. Linearity of Trajectories

Linearity in intermediate embeddings is quantified with the
line-shape score (LSS), defined by Gai & Zhang (2021) as

LSS0,...,L
i =

L∣∣∣∣x̃L
i − x̃0

i

∣∣∣∣
2

, (1)

where x̃0
i = x0

i and x̃l
i is defined recursively as

x̃l
i = x̃l−1

i +
xl
i − xl−1

i∣∣∣∣xl
i − xl−1

i

∣∣∣∣
2

for l = 1, . . . , L.

Note that LSS ≥ 1, with LSS = 1 if intermediate represen-
tations x0

i , . . . , x
L
i form a co-linear trajectory.

3.5. Equidistance of Embeddings

Equispacing of consecutive hidden representations of the
i-th token is quantified via

Ui =

√√√√ 1

L

L−1∑
ℓ=0

(
∥xl

i − xl+1
i ∥2 − xi

)2
x2
i

i = 1, . . . , n, (2)

where xi = Avei∥xl
i − xl+1

i ∥2. This is the standard devia-
tion over the mean of the perturbation norms, ∥xl

i − xl+1
i ∥2.
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3.6. Alignment of Residual Jacobians

To further investigate the hidden representations of trans-
former architectures, we examine the properties of the trans-
former blocks and the relationships between them. This is
done by analyzing the linearizations of the blocks given by
their Residual Jacobian matrices

J i
l =

∂

∂xl−1
i

((
hl(X l−1) + FFNl(g

l(X l−1))
)
i

)
,

for l = 1, . . . , L, i = 1, . . . , n. Note that this is the Jacobian
matrix for each block without the contribution from the
skip connection from the input, analogous to the quantities
measured by Li & Papyan (2023).

The singular value decompositions of these J i
l are com-

puted, i.e., Jl = UlSlV
⊤
l (with superscript i, indicating the

token, omitted for clarity), where Ul ∈ Rdmodel×dmodel and
Vl ∈ Rdmodel×dmodel are the matrices of left and right singular
vectors respectively, and Sl ∈ Rdmodel×dmodel is the singular
value matrix.

The matrices Ai,j,K := U⊤
j,KJiVj,K are plotted over all

pairs of depths i, j ∈ {1, . . . , L}, where Uj,K and Vj,K are
the sub-matrices with columns that are the top-K left and
right singular vectors of Jj , respectively.

To quantify the alignment of singular vectors of the Residual
Jacobians at depths i and j, we measure the ratio of the
average absolute off-diagonal entry to the average absolute
diagonal entry. More precisely, if the entries of Ai,j,K are
given by (ak1k2

)Kk1,k2=1, we define

r(Ai,j,K) =

1
K(K−1)

∑
k1 ̸=k2

|ak1k2
|

1
K

∑
k1=k2

|ak1k2
|

=

∑
k1 ̸=k2

|ak1k2 |
(K − 1)

∑
k1=k2

|ak1k2 |
.

3.7. Uncertainty of Predictions

Typically, the output of the last transformer block, xL
n , is

passed to the linear classifier, M . A softmax function is
then applied to the logits, MxL

n , to obtain the probabilities
for the next token in the vocabulary, PL

n = Softmax(ℓLn) =
Softmax(MxL

n).

One could alternatively pass the output of any intermediate
transformer block, xl

n, to the linear classifier, M . Applying
a softmax to the result, Mxl

n, also yields the probabilities
for the next token, P l

n = Softmax(ℓln) = Softmax(Mxl
n),

however, as determined up to that specific, earlier layer,
rather than the final one.

Given the probabilities P l
n, uncertainty in the next-token

prediction can be quantified through its entropy, defined as:

S(P l
n) = −

∑
v∈vocab.

P l
n(v) log(P

l
n(v)).

Maximal uncertainty (entropy) S(P ) = log(dvocab) is at-
tained for uniform probabilities P over dvocab elements.
Minimal uncertainty S(P ) = 0 is achieved when a single
vocabulary element v is assigned probability P (v) = 1.

4. Results
4.1. Expansion of Embeddings

Expansive dynamics are observed throughout all layers of
the model. The initial token embeddings X0 are small in
norm and begin to grow linearly and radially outward (Fig-
ures 1, 2). The representations consistently exhibit growth
through the Thought phase, with the average layer-wise
norm appearing largely prompt-independent (Figure 2). The
beginning of the Fixation phase is characterized by an in-
crease in token velocity and layer-wise norm becoming
highly prompt-dependent. Changes in scale can also be
observed from low dimensional projections of the represen-
tations (Figure 1; rows 2,3). In Llama-2, the mean norm
of trajectories appears linear through each phase, while for
GPT2 the mean norm grows faster than linear (Figure 2).

Figure 2. Norms of Embeddings Increase With Depth. Norm of
the (last token) embedding versus depth for various LLMs (Table
2), averaged across 100 prompts. Error bands capture the minimal
and maximal norm of a token trajectory across prompts. The dotted
red line indicates the approximate transition between Thought
and Fixation, characterized by increased embedding velocity and
greater variability across prompts.

4.2. Linearity of Trajectories

Qualitatively, the linearity of the trajectories is evident in
their low-dimensional projections (Figure 1).

Quantitatively, for each LLM, the trajectories attain a maxi-
mal LSS, indicative of minimal linearity, approximately at
1/4 of the transformer depth, in the Thought phase (Figure
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3). The transition from Thought to Fixation is distinguished
by an inflection point in LSS, occurring around the same
layer as the increase in norm velocity. During the Fixation
phase, there is a notable decrease in LSS for each model,
signifying enhanced linearity (Figure 3).

Figure 3. Linearity of Intermediate Representations. LSS ver-
sus depth for various LLMs (Table 2), averaged across 100
prompts. LSS is computed over a local window of 11 layers
centered at varying depths l, i.e., [l− 5, l+5]. The error band cap-
tures the minimal and maximal values across prompts. Included
are approximate locations of the transition between Thought, char-
acterized by minimal linearity (maximal LSS), and Fixation, char-
acterized by maximal linearity (minimal LSS).

4.3. Equidistance of Embeddings

Qualitatively, the equidistance of the intermediate embed-
dings is clearly visible in their low-dimensional projections
(Figure 1). Indeed, points are, for the most part, uniformly
spaced from each other across all LLMs and depths.

Quantitatively, the variation in distances between intermedi-
ate embeddings peaks during the Thought phase (Figure 4),
where the ratio of the standard deviation to the mean in the
norms of perturbations reaches as high as 0.3 for the largest
of the LLMs. The transition from Thought to Fixation phase
is characterized by a significant reduction in this ratio, in-
dicating that token perturbations become more uniform in
norm. This change corresponds with the layer where norm
velocity increases and where an inflection point in linearity
measures is observed.

Throughout the Fixation phase, the distances between em-
beddings become notably consistent, maintaining a standard
deviation to mean ratio of about 0.1 (Figure 4).

Figure 4. Equidistance of Intermediate Representations. Mean
equidistance versus depth for various LLMs (Table 2), averaged
across 100 prompts. Equidistance is computed over a local win-
dow of 11 layers centered at varying depths l, i.e, [l − 5, l + 5].
The error band captures the minimal and maximal values across
prompts. Included are approximate locations of the transition be-
tween Thought, characterized by less equidistant embeddings, and
Fixation, characterized by more equidistant embeddings.

4.4. Uncertainty of Predictions

Prediction certainty generally increases as tokens pass
through transformer blocks (Figure 5). The Thought stage
shows almost identical confidence among prompts, reflected
in the low variation in entropy measurements. In each LLM,
a maximal entropy of log(dvocab) is nearly achieved in the
first layer, followed by a general increase in confidence. The
transition between Thought and Fixation phases is charac-
terized by an increase in variation between prompts. Greater
confidence emerges in the Fixation stage, and varies de-
pending on the information included in an individual input
prompt. In some prompts, a prediction is completely fixated
and total certainty is assigned in the deeper layers of GPT2
and Falcon (Figure 5). In other prompts, confidence fluctu-
ates until a next token emerges, and a prediction is decided
with low certainty.

4.5. Alignment of Residual Jacobians

We observe alignment of the top left and right singular
vectors of the Jacobians Jl across depth (Figure 7), evident
in the distinct diagonal lines present in the matrix subplots.
This phenomenon is consistently observed across LLMs,
similar to the observations made for ResNets (Li & Papyan,
2023).

Notably, the depths demonstrating the strongest alignment
vary among the models, as depicted in Figure 6. Both
Llama-2 models (7B and 13B) exhibit their strongest align-
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Figure 5. Entropy of Final Token Representations. Uncertainty
in prediction probabilities P l

n at each layer in various LLMs (Table
2), for 100 prompts (Section 3.2). Entropy after each decoder layer
is plotted for each prompt. The approximate transition between
the Thought phase (shallower layers) and Fixation phase (deeper
layers) is labelled.

ment in the Thought phase, with some alignment reappear-
ing in the final few layers. Falcon 7B has less Jacobian
alignment in the initial few blocks, but demonstrates align-
ment deeper in the network. Meanwhile, the GPT-2 models
have the strongest Jacobian alignment overall, extending
to the deeper layers of the network. Across these mod-
els, strong alignment is consistently observed during the
Thought phase, with models such as Llama-2 exhibiting
notably less alignment during the Fixation phase.

4.6. Relation Between Metrics

Our observations show expansion in norm (Section 4.1)
linear trajectories (Section 4.2), and a general increase in
model confidence in late embeddings (Section 4.4). These
properties are interconnected, as detailed in the subsequent
result.

Proposition 1. Let v, b ∈ Rm where v has a single largest
component, v1 > v2, . . . , vm. For elements on the line
{λv + b | λ ∈ R}, probabilities Softmax(λv + b) decay in
entropy for large λ.

lim
λ→∞

S(softmax(λv + b)) = 0

Proof. See Appendix A.2.

Throughout our results, the embeddings x0
n, x

1
n, . . . , x

L
n

trace a line. Together with the linearity of the classifier,
M , this implies that the logits are also traversing a line.
Proposition 1 above suggests that such linear movement of

(a) Llama-2 13B (b) Llama-2 7B (c) Falcon 7B

(d) GPT-2 1.5B (e) GPT-2 774M (f) GPT-2 355M

Figure 6. Strength of Residual Jacobian Alignment Across Dif-
ferent Depths. The ratio of the average absolute value of the off-
diagonal entries to the average absolute value of the diagonal en-
tries of Ai,j,30 = U⊤

j,30JiVj,30 are visualized across pairs of depth.
In each subplot, each entry (i, j) has the value r(Ai,j,30) plotted,
averaged across question prompts from SQuAD v2.0 Wikipedia
questions about dogs. A lower value of r(Ai,j,30) (darker red in
the plot) indicates stronger alignment between Residual Jacobians
at depths i and j.

logits induces a decrease in entropy, which aligns with our
uncertainty measurements.

5. Discussion
5.1. Comparison to ResNets

Linearity and Equidistance. Linearity and equidistance
in hidden representations, as observed in ResNets (Li
& Papyan, 2023), are also present in LLMs. The LSS
values (Figure 3) across all tested LLMs (Table 2) are
between 2.0 and 3.0 through the Fixation stage. These
values are similar to those observed for ResNets (Gai
& Zhang (2021), page 18).

Residual Jacobian Alignment. The phenomenon of
Residual Jacobian alignment is generally present in
LLMs (Figure 7), with some variation among models
in terms of the layers where it occurs. Stronger align-
ment is usually observed in the earlier to middle layers,
contrasting with the previously observed alignment in
ResNets, where alignment may be weaker in the initial
layers but tends to strengthen later in the network (Li
& Papyan, 2023). An interesting observation is that
a significant portion of Jacobian alignment occurs
before the model makes a decision on the next token,
hinting at a potential relationship between alignment
and the model’s predictive capabilities.

6
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The relationship between the strength of Jacobian alignment
and linearity remains unclear in transformers; the Thought
phase generally shows greater alignment despite having
lower linearity, while the opposite is true in the Fixation
phase. Further investigation is required to determine the
exact relationship between Residual Jacobian alignment,
linearity, and its emergence in transformers.

(a) Llama-2 13B (b) Llama-2 7B

(c) Falcon 7B (d) GPT-2 1.5B

(e) GPT-2 774M (f) GPT-2 355M

Figure 7. Residual Jacobian Alignment of Top Singular Vec-
tors. The figure illustrates the alignment of Residual Jaco-
bians across transformer blocks 9 to 16 (part of the Thought
phase). For each subplot, in the square located at entry (i,
j), the absolute values of the entries of matrices Ai,j,30 =
U⊤

j,30JiVj,30 (using the top 30 singular vectors) are visualized
using the prompt ‘What is the capital of France?
The capital is’ with its final token. The diagonal line in
the plots indicates alignment of Residual Jacobians, where the
top singular vectors of Jj diagonalize Ji, with diagonal entries
that are sufficiently large compared to the off-diagonal entries.
Visualizations over all depth pairs are included in Appendix C.

5.2. Comparison Between Large Language Models

Llama-2. vs. Falcon. Thought and Fixation are clearly dis-
tinguished in linearity of trajectories, uncertainty of
predictions, and alignment of Jacobians in Llama-2.
The phase transition is not clear in Falcon, however the
two phases are evident in shallower and deeper layers.
Despite Llama-2 7B and Falcon 7B being comparable
in size, measurements differ greatly.

Llama-2 vs. GPT-2. Llama-2 and the larger GPT-2 models
show a distinct transition between Thought and Fixa-
tion. GPT-2 shows greater linearity and equispacing
than Llama-2. Llama-2 features an almost maximal
uncertainty during the Thought phase, while prompt-
independent decrease is generally present in GPT-2.
Residual Jacobians align throughout several layers in
GPT-2, otherwise occuring only in Thought in Llama-
2.

GPT-2 vs. Falcon. The transition between Thought and
Fixation is clear in GPT-2, in contrast to Falcon. Linear-
ity is significantly greater in GPT-2. Residual Jacobian
alignment is evident in several layers in both LLMs.

5.3. Final Layer

There is a clear irregularity in the final representation as
reflected in every metric (Figures 1, 2, 3, 4, 5). This may be
attributed to a layer normalization applied in the final layer
before a prediction is made. Among many prompts, the
correct next-token prediction is fixated before the very last
layer, while the normalization introduces greater uncertainty.
The significance of the final normalization and its effect on
training and generalization requires further investigation.

5.4. Effect of Model Size

In the LLMs considered in our work, the dynamical lin-
earity of the representations X l and overall uniformity of
trajectories decrease with number of parameters (Figure
C). Moreover, a consistent and significant drop in LSS and
uniformity is observed in the Fixation phase (Figures 3,
4), the magnitude of which appears independent of model
size. While still demonstrating Thought and Fixation phases,
there is less distinction in smaller GPT2 models. To rein-
force our understanding of the relationship between model
size and the geometry of the trajectories, more LLMs with
a varying number of parameters must be considered, and is
left for future work.

5.5. Regularity and Training

The Llama-2 and Falcon models share similar architectures
and sizes, and both were trained with identical weight decay
and learning rate schedulers. From available data, their train-
ing differs only in the maximal learning rate: 3.0 × 10−4

7
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in Llama-2 7B while 1.85 × 10−4 in Falcon 7B (Touvron
et al., 2023; Almazrouei et al., 2023). Yet, generalization
capabilities are significantly greater in Llama-2, particularly
in reading comprehension performance: Llama-2 7B scores
61.3, while Falcon 7B scores 36.0. This discrepancy in per-
formance is further echoed by our findings that these models
differ in the properties of their hidden representations, sug-
gesting a potential relationship between generalization and
regularity (Section 5.2).

Understanding the relationship between training methods
and regularity in representations holds potential implica-
tions for the enhancement of LLMs. The development of
techniques to amplify specific types of regularity could pave
the way for more principled approaches to improving model
performance. The exploration of the connection between
hidden representation regularity, generalization, and LLM
training, as prompted by our work, presents an intriguing
research direction with important practical implications.

6. Related Work
Residual Networks. ResNets have been viewed as an en-
semble of shallow networks (Veit et al., 2016), with studies
delving into the scaling behaviour of their trained weights
(Cohen et al., 2021). The linearization of residual blocks
by their Residual Jacobians was first explored by Rothauge
et al. (2019), who examined Residual Jacobians and their
spectra in the context of stability analysis, and later by Li
& Papyan (2023) who discovered Residual Alignment. We
continue this line of work by further investigating Residual
Jacobians in transformer architectures.

Information Processing in LLMs. Previously, Katz &
Belinkov (2023); Bietti et al. (2023) have described memory
and semantic flow in intermediate states of transformers
while van Aken et al. (2019) have examined BERT hidden
trajectories. Investigation of LLMs for reasoning tasks and
interpretability remains an important research focus (Huang
& Chang, 2023). Our work provides insight into information
processing and prediction in LLMs through identifying two
phases in the hidden representations, characterized by their
geometric, algebraic, and probabilistic properties.

Hidden Representation Dynamics. Previous studies (Gai
& Zhang, 2021; Haber & Ruthotto, 2017; Ee, 2017), have
focused on interpreting deep neural networks from a dy-
namical systems perspective. In particular, the layer-wise
transformations between transformer blocks are interpreted
as discrete approximations to continuous curves through
representation space. Throughout training, numerical exper-
iments have shown that both plain networks and ResNets are
aptly approximated by a geodesic curve in Wasserstein space
(Gai & Zhang, 2021). Other interpretations involve parti-
tioning activation space into basins of attraction, with fixed

points representing discrete thoughts (Nam et al., 2023).
For further related works, see (Geshkovski et al., 2023b;a;
Tarzanagh et al., 2023; Valeriani et al., 2023).

Structure in Representations. Emergence of regularity
in last-layer representations during training was noticed in
Neural Collapse (Papyan et al., 2020). Motivated by this,
Parker et al. (2023) examined a structure of representations
analogous to Neural Collapse in intermediate hidden states.
Our work studies the representations of all layers in LLMs,
and discovers regularity in geometric, algebraic, and proba-
bilistic properties in LLMs.

Information Geometry. A space of probability measures
may be endowed with geometric structure, allowing for the
analysis of information manifolds. In recent years, optimal
transport has been investigated on spaces equipped with dif-
ferent geometric properties (Khan & Zhang, 2022; Rankin &
Wong, 2023). Gai & Zhang (2021) have proposed ResNets
as transporting an input distribution with the optimal trans-
port map and induce equidistancing of representations in
trajectories. Our work provides insight into the transfor-
mation of distributions in LLMs, with further relations to
trajectories on the probability simplex in Appendix A.3.

7. Conclusion
A detailed description of the complexities of transformer
blocks in the context of language modeling is an active area
of research, and our primary goal was to enhance the under-
standing of the mechanics underlying transformer architec-
tures. In this paper, we provided a quantitative description
of the hidden representations and embedding trajectories
within LLMs. We introduce Thought and Fixation phases
which characterize and qualitatively describe the stages that
the hidden representations endure when passing through
the transformer blocks. The characteristics of each of these
phases remains consistent among the models considered in
this paper and occur across a wide variety of textual prompts,
demonstrating vast applicability.

Our results have identified the dependence of prediction
certainty, embedding trajectories, and Jacobian alignment
on model size and training methods, and contain strong
connections with the recently adopted dynamical system
interpretation of deep learning. These findings open av-
enues for future research for a deeper understanding the
connections between regularity of hidden representations
and model specifications, LLM architecture, and generaliz-
ability.

8. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
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consequences of our work, none which we feel must be
specifically highlighted here.
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A. Mathematical Results
A.1. Additional metrics

For a given prompt, a certain target next-token prediction
may be represented with an indicator probability density
Ptarget(v) ranging over all tokens v in the vocabulary.

Ptarget(v) =

{
1, v is target token
0, otherwise

The resulting distance between intermediate densities P t
n

from Ptarget is quantified through the normalized total varia-
tion

δ(P l
n, Ptarget) =

1

2

∑
v∈vocab.

∣∣P l
n(v)− Ptarget(v)

∣∣ ∈ [0, 1]

A.2. Proofs

Proposition 2. Let v, b ∈ Rm where v has a single largest
component, v1 > v2, . . . , vm. For elements on the line
{λv + b | λ ∈ R}, probabilities Softmax(λv + b) decay in
entropy for large λ.

lim
λ→∞

S(softmax(λv + b)) = 0

Proof. Let Pλv+b = Softmax(λv + b). Selecting the first
component, namely (Pλv+b)1.

lim
λ→∞

eλv1+b1∑
k e

λvk+bk
= lim

λ→∞

1

1 +
∑

k>1 e
λ(vk−v1)+bk−b1

= 1

Since vk−v1 < 0 by assumption. A similar argument shows
that the v1 exponential term dominates in the component
(Pλv+b)j for 1 < j ≤ m.

lim
λ→∞

eλvj+bj∑
k e

λvk+bk

= lim
λ→∞

1

eλ(v1−vj)+b1−bj +
∑

k ̸=j e
λ(vk−vj)+bk−bj

= 0

Given arbitrary δ > 0 and choosing λ large such that
(Pλv+b)1 > 1 − δ, all other components must satisfy
(Pλv+b)j < δ. Computing the entropy:

S(Pλv) = −
m∑
j=1

(Pλv+b)j log(Pλv+b)j

≤ (1− δ) log(1− δ) + nδ log(δ)

As δ → 0, we have S(Pλv+b) → 0. In particular,

lim
λ→∞

S(Pλv+b) = 0
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A.3. Geometry and Probability Density

Geometric properties and entropy decay coincide during the
Thought and Fixation phases, related by result 1. A relation-
ship between these properties is motivated by the correspon-
dence of last-token hidden representations xl

n to prediction
probabilities P l

n through P l
n = softmax(Mxl

n). Proposition
1 and linearity of the transformer head classifier M therefore
suggest a decay in classifier entropy S(softmax(Mxl

n)) as
l → L, as discussed in Section 4.4.

This perspective suggests a general geometric description
of hidden representations X l and prediction. The space of
possible dvocab-dimensional probability vectors (the proba-
bility simplex) corresponding to all possible densities over
dvocab elements (i.e. the vocabulary of tokens) is

C =

{
x ∈ Rdvocab

∣∣∣ dvocab∑
i=1

xi = 1, xi ≥ 0

}

Suppose xl ∈ RH is a representation and f : RH → RV is
a function on representation space. softmax : Rd

vocab → C
represents each element of RV as an element of the prob-
ability simplex. The composition softmax ◦ f assigns to
each hidden representation xt ∈ RH a probability vector
softmax(f(xl)) ∈ C corresponding to a particular probabil-
ity measure on vocabulary tokens. The trajectory (xl)

L
l=1

therefore corresponds to a trajectory on the space of categor-
ical probability densities over dvocab tokens. In this work, we
suggest that trajectories (xl)

L
l=1 on the probability simplex

tend towards densities with maximal probability assigned to
the correct next-token vocabulary component.

B. Additional Figure Detail
B.1. Prompt Details

Several illustrative prompts are tested across all models,
particularly non-ambiguous short prompts. (e.g “What is
the capital of France? The capital is”, “United States of”)
or questions that cannot be answered without additional
context (e.g “What is my favourite colour? The answer
is”, “Which month is my birthday in? The answer is”). We
utilize 100 questions with prepended context from the ‘Dog’
category are illustrated (Figures 2, 3, 5).

B.2. Intermediate Probabilities

The Thought phase begins at the initial layer, with al-
most maximal entropy S(P l

n), corresponding to the en-
tropy of the uniform distribution over vocabulary items
S = log(|dvocab|). For each LLM, entropy decay in the
initial Thought stage occurs with similar behaviour across
prompts (Figures 8, 5); entropy is constant in Llama-2 7B,
13B models until layer 20, GPT-2 1.5B, 762M feature an
decreasing decay, while Falcon 7B features several overlap-

ping jumps. A gradual decay pattern is not clearly observed
in GPT-2 345M, however, entropy behaviour agrees across
prompts in early layers before becoming prompt-dependent
in later transformer blocks (Figure 5). A constant maximal
entropy in Llama-2 7B, 13B corresponds to uniform and
low probability being assigned by P l

n to the next-token pre-
diction during the thought stage. In Falcon 7B and GPT-2
variants, larger next-token prediction probabilities are as-
signed in earlier layers (Figures 9, 5), with large layer-wise
jumps in predicted token and probability until the Fixation
phase.

A highly prompt-dependent Fixation stage follows the
thought phase: question prompts with sufficient context
and clarity show almost zero entropy, while ambiguous
prompts fluctuate in entropy (Figure 8). During the Fixation
stage in a non-ambiguous prompt, the density P l

n assigns
high probability (commonly ≈ 1) to a single vocabulary
token, settling on the correct next token prediction (Figure
10). In an ambiguous prompt, a higher probability may be
assigned to several tokens, typically including the correct
next token (Figure 11). The entropy fluctuates in ambiguous
prompts due to significant changes in layer-wise next-token
prediction probability, since P l

n does not settle on a single
candidate token. The Fixation phase in Llama-2 13B, 7B is
abrupt; certainty in a candidate token quickly grows during
the transition from the thought phase (Figure 10, 11), im-
mediately settling on the correct token. In Falcon 7B and
GPT-2 variants, the transition from the thought phase is less
distinct (Figure 9, 5), and features several changes before
settling on the correct next-token prediction. The end of the
Fixation stage is marked by a sudden increase in entropy
in the last several layers across all measured GPT models.
In the last layer, several new tokens are assigned non-zero
probability (Figures 8, 10, 11, 5). Jumps in the last layer
are also highly prompt-dependent, with additional context
reducing entropy (Figure 8).

C. Additional Figures
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Figure 8. Intermediate entropy S(P l
n) among hidden layers for

variants of Llama-2, Falcon, and GPT2 for the prompt ‘What is
the capital of this country? The capital is’ with optional context.
Context is introduced by prepending the first Wikipedia paragraph
about the United Kingdom (3.2). Upper plots are rescaled for
comparison of models with varying depths. With context, models
make the correct next-token prediction (‘London’) while those
without context do not. In the no context prompt, large oscillations
are observed in the deeper transformer layers.

Figure 9. Falcon 7B, unambiguous prompt (‘What is the capital of
France? The capital is’), intermediate transformer head predictions
and entropy at layers 4, 8, 12, 16, 20, 24, 28, 32. At the first layer,
entropy is almost maximal (S(P 0

n) = 11.067 ≈ log(64, 000),
64k Falcon vocabulary size). Decay occurs for layers 0-20 and
probability > 10−3 is assigned to various incorrect tokens. In
layer 20 the model correctly predicts ‘Paris’ with p = 0.835 and
settles on the prediction throughout the remaining layers, despite
briefly jumping to ‘Rome’ with high probability in layer 24. The
final prediction is ‘Paris’ with p = 0.861.
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Figure 10. Llama-2 13B, unambiguous prompt (‘What is the cap-
ital of France? The capital is’), intermediate transformer head
predictions and entropy at layers 5, 15, 23, 30, and 40. At initial
layers (0-18), predictions are highly uncertain (entropy is almost
maximal: S(P 0

n) = 10.373 ≈ log(32, 000)). A transition occurs
at layer 23; a larger probability is assigned to ‘Paris’ and other
tokens (e.g. ‘capital’). From layer 25, the Fixation stage occurs:
the ‘Paris’ token is assigned p ≈ 1 until the final layer, in which it
is assigned p = 0.747.

Figure 11. Llama-2 13B, ambiguous prompt (‘What month was I
born in? The answer is’), intermediate transformer head predic-
tions and entropy at layers 10, 20, 30, 35, and 40. At initial layers
(0-18), predictions are highly uncertain (entropy is almost maxi-
mal, S(P 0

n) = 10.373 ≈ log(32, 000)). The entropy transition
near layer 20 is followed by oscillations in entropy (S(P l

n) ̸= 0,
in contrast to Figure 10). Non-zero probability is assigned to many
tokens (e.g. ‘simple’ and ‘January’). The final prediction is ‘in’
(p = 0.082), with similar probability to many other candidates (eg.
‘January‘).

Figure 12. Number of parameters of Llama-2 13B, 7B, Falcon 7B,
and GPT-2 1.5B, 762M, 345M versus mean layer-wise LSS (left)
and mean variance (right) over (1) every layer in the transformer
block and (2) only of the layers considered in the Fixation phase.
In both cases (1) and (2), the GPT2 mean uniformity generally
increases across the various model sizes, as is the case with Llama-
2 and variants. Constant across all models is a sharp increase in
dynamical uniformity in case (2) in comparison with case (1).
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Figure 13. LSS and Equidistance Residuals. Residuals from the mean curve versus depth for various LLMs (Table 2), averaged across
100 prompts. Both LSS and Equidistance are computed over a local window of 11 layers centered at varying depths l, i.e., [l − 5, l + 5].
The dotted lines captures the first standard deviation of the data set at each layer. Included are approximate locations of the transition
between Thought, characterized by minimal linearity (maximal LSS), and Fixation, characterized by maximal linearity (minimal LSS).
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Figure 14. Residual Jacobian alignment on Falcon-7b for prompt ‘What is the capital of France? The capital is’ with its final token.
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Figure 15. Residual Jacobian alignment on Llama2-13b for prompt ‘What is the capital of France? The capital is’ with its final token.
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Figure 16. Residual Jacobian alignment on GPT2-XL for prompt ‘What is the capital of France? The capital is’ with its final token.
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Picking an LLM’s Brain: Thought and Fixation in Hidden Representations

Figure 17. Residual Jacobian alignment on GPT2-L for prompt ‘What is the capital of France? The capital is’ with its final token.
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Picking an LLM’s Brain: Thought and Fixation in Hidden Representations

Figure 18. Residual Jacobian alignment on GPT2-M for prompt ‘What is the capital of France? The capital is’ with its final token.
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