Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 1

1 Project Summary

This project has been completed in collaboration with the Deep Underground Neutrino Experiment
(DUNE) under the direct supervision of William Dallaway and Professor Nikolina Ilic. In this paper, we
provide an overview of theoretical physics concepts, DUNE’s objectives, and the GNN NuGraph, as well as
its limitations within the DUNE context. We further discuss the modifications we made to NuGraph to
enhance training, validation, and test performance, along with the theoretical rationale behind these
changes. The modifications that we made to the model showed vast improvement on test accuracy and
overall model preformance. Moreover, we highlight additional ways in which the model can be improved,
and attribute these modifications to future work.

2 Introduction

Before discussing the main components of this project, we provide a brief overview of neutrino particle
physics, mixing probabilities particular in the context of tau neutrinos, and given a summary of the goals
and methodologies of DUNE.

2.1 Neutrino Physics

Neutrinos are extremely lightweight, electrically neutral subatomic particles that interact predominantly via
weak nuclear and gravitational forces. Initially thought to be massless, experimental evidence supported by
theoretical models like the Standard Model and grand unified theories has confirmed that neutrinos possess
small, non-zero masses. Neutrino oscillations, where a neutrino can change between electron, muon, and
tau flavors, demonstrate these non-zero masses and remain a key puzzle in particle physics. The neutrino
mass eigenstates vy, 12, and v3, with masses m1, me, and mg respectively, form the basis for neutrino
states, allowing for combinations that yield the distinct flavors v, v, and v;. This linear combination can
be unambiguously defined by the 3 x 3 unitary mixing matrix, commonly referred to as the PMNS matrix:

Ve Uel UeQ Ue3 V1
vy = U/Jl U#Q Uﬂg %] (1)
vr U‘rl U8T2 UT3 Vs

PMNS

The presence of non-zero off-diagonal entries and distinct mass eigenstates (m;) leads to neutrino
oscillations. Experimental evidence indicates that the oscillation probability is related to the squared mass
differences (Am?j =m? — m?) The space of 3 x 3 unitary matrices is generally nine-dimensional, but in
the PMNS matrix, five degrees are absorbed into phases of lepton fields. Consequently, the PMNS matrix
can be uniquely described by three mixing angles (612,613, and 623) and a single phase angle (0cp) that
quantifies charge parity violations. In this case, the PMNS matrix can then be decomposed into the

product of three rotation matrices about each axis:

Reactor/Accelerator Neutrinos

Ve
Uer Ue Ues 0 0 €13 0 sige ™ ci2 s12 0
Uﬂl UHQ U,uS = 0 C23 523 0 1 0 —S812 C12 0 (2)
Ui Uer2 Usrs 0 —s23 co3 —s13€ 0 c13 0 0 1
Atmospheric Neutrinos Solar Neutrinos

VU, Ved—rUx

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 2

2.2 Tau Neutrinos (v,)

Tau neutrinos (v,) pose significant challenges for detection due to kinematic constraints, making their
appearance rare at typical beam energy levels. Moreover, the associated tau leptons exhibit multiple decay
modes, complicating their identification as they can mimic v, and v, charged current events or neutral
current events. These inherent difficulties contribute to the prediction of approximately 800 tau neutrino
events per year in the high-energy neutrino regime. The oscillation probability from v, to v, can be
derived from 1, and provides an oscillation probability of v, — v, is given by

Am2;L

P(v, — v;) = sin?(2623) sin? [—23= (3)
4F

Because the near detector is in close proximity to the source beam, which primarily generates non-v,

particles, it is anticipated that very few, if any, v, charged current events will be observed. In particular,

the oscillation probability of an initially v, flavoured neutrino transitioning to the v, flavour is given by

o Ami L

P(v, — v;) = sin?(20,3) sin 15 (4)

where Am?, is the mass difference of a new mass eigenstate in the 3 + 1 scenario [1]. This process is
referred to as short-baseline sterile-driven v, appearance. In summary, the high-energy beam mode will
offer chances to detect v, charged current events in the near detector and measure v, charged current cross
sections in the far detector modules.

2.3 DUNE Colaboration

The DUNE experiment aims to measure oscillation probabilities for muon neutrinos or their antineutrinos
transitioning into electron neutrinos, essential for understanding neutrino flavor mixing and potential
violations of charge parity symmetry. Central to DUNE are a high-intensity neutrino beam, a near detector
providing initial energy spectra measurements, and a far detector for detailed interaction reconstruction,
located 1300 km away underground. A schematic diagram highlighting the main hardware components of
the experiment is included in Figure (1). The far detector comprises four liquid argon time projection
chamber modules, facilitating precise event reconstruction, with two modules utilizing single-phase
technology and one utilizing dual-phase, while the fourth remains under development. The near detector
serves as the control, minimizing systematic errors and uncertainties in neutrino interaction reconstruction,
crucial for accurately predicting far detector observations.

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 3

Sanford
Underground
Research

Facility 00 miles | 1300

Fermilab

wilometer®

Figure 1: A schematic diagram highlighting the key components of the DUNE physics experiment. The data which
will eventually be given to NuGraph is collected in whole at the far detector located at the Stanford Underground
Research Facility.

The experiment also aims to detect supernova neutrinos and study nucleon decay, necessitating detectors
with large, stable reference masses. The far detector’s single-phase technology immerses all components in
liquid argon, enabling precise event reconstruction based on ionization patterns. Conversely, the dual-phase
technology amplifies ionization signals through avalanches, offering enhanced signal-to-noise ratios and
longer drift lengths for improved resolution. Both technologies employ photon detectors to capture
scintillation light emitted by ionized particles, essential for event reconstruction and drift correction. The
success of DUNE hinges on its detectors’ ability to provide high-resolution images of neutrino interactions,
crucial for uncovering new physics beyond the standard model and advancing our understanding of
neutrino properties.

3 NuGraph

The team at CERN directly utilized the model as found on the Github, structuring the ProtoDUNE
dataset to fit the parameters required by the model. This repository hosts NuGraph which is designed to
reconstruct particle interactions within neutrino physics detector environments. Its main purpose is to
classify particle types based on detector hits using semantic segmentation. Additionally, it offers secondary
functionalities including background hit rejection, event classification, clustering, and vertex
reconstruction. In this section, we describe the orginal model as forked, and discuss the shortcoming of and
issues with this model in the context of training on the ProtoDUNE dataset.

3.1 Model Architecture and Structure

The NuGraph project revolves around developing and training a graph neural network designed for the
detection of tau neutrinos. The key components of the model reside primarily in the
numl/NuGraph/scripts directory, with particular emphasis on the train.py and NuGraph?2.py scripts.
These scripts orchestrate the training and inference processes, respectively, utilizing various libraries and
utilities.

The model leverages PyTorch extensively, employing its torch library for tensor operations, optimization,
and neural network construction. Within torch.nn, the Sequential module is prominently utilized for
constructing sequential layers. Additionally, specialized components such as the SimpleConv message
passing operator and functions from torchmetrics for metric computations are integrated into the model
architecture.

https://github.com/exatrkx/NuGraph

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 4

Feedforward Layers

Two-layer sequential network with one linear and one non-linear layer:
z = tanh(Wx + b)

W,b are learned parameters

Encoder

NexusNet EdgeNet: Two-layer sequential network with Softmax.

et

Y.e”
NodeNet: Four-layer sequential network. .
z = tanh (W, tanh(W,x + b)) + b,)

W,b; are learned parameters

z = 6(Wx + b) (o(x)); =

PlaneNet Very similar to NexusNet

Figure 2: A diagram which visually depects the feedforward layers of the network. The encoder layer is used to
predict the event label of a given sample, and is the centre of focus of our development.

Among the utility modules, PositionFeatures.py, FeatureNorm.py, and RecallLoss.py play crucial
roles. The RecallLoss function, for instance, serves as the optimization objective, minimizing the loss £
by adjusting model parameters 6. It computes a weighted cross-entropy loss, where the weight is
determined by the recall of model predictions relative to ground truth labels.

The training pipeline, orchestrated by train.py, encompasses two main functions: configure and train.
The former initializes arguments and model parameters from command-line inputs, while the latter
orchestrates dataset configuration, invokes the main model (NuGraph2.py), logs training progress for
Slurm, and employs the PyTorch Lightning Trainer module for network training.

Really just cross—entropy loss:
Z(6) = Avg, CE(y,;, o(f(x;,) CE(p,p) ==) p;In(p)
Uses the soft plus function;

\/ Z) L(x) = log(1 + exp(x))

Smooth analog of RelLU

Z(6) = Avg, (X + F(—2X) — log(2))

Figure 3: A diagram which visually depects the loss functions used by each part of the model. The Recallloss is
used to train the Encoder layer, while the LogCoshLoss is used by NexusNet and PlaneNet.

Within the nugraph directory, the data and models subdirectories contain essential components. data
encapsulates data configuration methods, including the H6DataModule responsible for extracting pertinent
information from input data files. On the other hand, models comprises various network architectures and
associated functionalities, such as data encoding (encoder.py), decoding (decoder.py), and network

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 5

architecture components (nexus.py).

Before training begins, the training dataset is partitioned into batches of samples. During each epoch of
training, the model loops through these batches, updating the model parameters are each batch. This
marks the completion of a single iteration. The batching process is handled by the BalancedSampler class.
This class is designed to create balanced batches for training or evaluation while maintaining the relative
frequency of each class within the entire dataset. Upon initialization, the sampler calculates the number of
batches based on the specified batch size (which is an input parameter to the model) and determines the
fraction of the dataset length to be used for balancing. It then separates the dataset into outliers,
consisting of samples with the largest sizes, and the bulk of the dataset. These outliers are distributed
among bins to ensure each bin receives a fair share, while the remaining samples are allocated to each bin
to fill them up to the batch size limit, preventing overfilling. The methodologies used to batch the data can
have significant impacts on the success of training, and is discussed in further detail in Section 3.3.

3.2 Model Training

The model is trained using the train.py script. Due to the large number of parameters and variables
needed to be specified in order for training to run, we utilize bash scripts to easly and consistently run
training jobs. In particular, passing user information, runtime, GPU and RAM requests, as well as passing
training parameters such as batchsize, number of training epochs, and training features is all heavily
simplified through the use of this training script. The main command within the bash script run_train.sh
is as follows;

singularity exec --nv {NUML PATH}/numl:v23.9.0.sif python {NUGRAPH PATH}/train.py
--name {LOG_NAME} --logdir /scratch/{USERNAME} --data-path /project/6079563/{FILE_TO_TRAIN}

--batch-size 32 --in-feats 8 --event --semantic --epochs 80

This command passes all required training parameters required to properly train the model. The above
command further stipulates that the model is to train on both the event and semantic labels. To begining
training the model, we run the following command within the Canada compute cluster, calling
run_train.sh

sbatch -J {job-name} run_train.sh {log-directory} {dataset-directory} (5)

For example, the boiler-plate command that we utilized for our training purposes is:

sbatch -J murdock_test run_train.sh murdock_log MCprod/training hdf5/new_all_beam.gnn processed.hb
(6)

To resume training from the previously logged checkpoint, a very similar command to 5 is to be called, in

our case calling run_resume.

Running either of the above commands will initiate training using the specified training sample, and will
output training logs and checkpoints into the specified {log-directory}. Moreover, we can use the
Tensorboard interface to visualise these metrics and track the network’s training progress. By accessing
tensorboard by launching a local host in the cluster home directory, we are able to access the current status
of training, along with all outputted metrics. This real-time allows us to make inferences on the quality of
training more accurately, and ultumately contribute to our ability to maximize the models preformance.

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 6

3.3 Shortcomings

In this section, we provide a breif descriptions of some of the pitfalls that NuGraph is subject to in the
context of our dataset in particular. Each sample that we have to train the model with has one of four
event labels associated with it; muon neutrino, electron neutrino, tau neutrino, or neutral current sample.
To train the model, we are using training samples generated from ProtoDUNE. Unfortunetely, the data
collected from this testing module is heavilty skewed away from tau neutrinos.

Training Sample Frequency

12000

10000 1

8000 A

6000

Frequency

4000 A

2000 1

y,u Ve Ve NC

Figure 4: A bar graph displaying the frequency of each sample type within the training dataset. Note the relatively
low frequency of the tau neutrino samples, with a large dominance on neutral current samples. This skewed frequency
severely effects the models ability to accurately and consistency classify particular classes, particularly in the case of
tau neutrino samples.

Included in Figure (4) is a bar graph illustrating the frequency distribution of each sample type within the
training dataset. It is noteworthy that the tau neutrino samples exhibit a notably low frequency,
contrasting sharply with the predominant occurrence of neutral current samples. This skewed frequency
distribution significantly impacts the model’s capacity to accurately and consistently classify specific
classes, particularly evident in the case of tau neutrino samples. The disparity in sample frequencies poses
a considerable challenge for the model, potentially leading to biases and inaccuracies in classification
outcomes, especially for underrepresented classes like tau neutrinos. Addressing this imbalance in the
dataset is crucial for improving the model’s robustness and generalization performance across all sample

types.

As described in Section (3.1), the model uses a batching module called BalancedSampler.

4 Model Refinements and Training Results

In this section, we discuss the modifications made to the general-purpose model to ensure better
preformance on the tasks required for DUNE. Moreover, we highlight the results of these modifications and
indicate overall preformance of the modified models in comparison to the vanila model across a variety of

metrics.

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 7

4.1 Modifications

In efforts to combat the issues resulting from a heavily imbalanced dataset, we implemented three distinct
modifications to the architecture of the network itself. In particular, we test the effect of implementing a
modified, weighted loss function, the effects of expanding the model’s width within the event decoder, and
finally the reprecussions of altering the batching process of the data before training starts. Each of these
methods has the same goal of improving the model’s training accuracy on tau neutrino data samples, and
does so in distinctly different ways. After implementing and testing these modifications, a variety of results
were observed, all of which show the model to exceed its previous preformance on the validation and test
datasets. These three modifications are summarized bellow in full detail, included with overarching
theoretical descriptions and motivations.

4.1.1 Weighted Loss Function

A machine learning model is trained by feeding input data into a function which is a composition of linear
layers and nonlinear activation functions which are applied in sequence. The linear layers consist of large
matrices called weights, and affine transformation vectors, called biases. Each of the input samples has a
“correct” output, which the model is intended to learn to predict over time. They was the model learns to
do this is by minimizing an error function, called the loss. NuGraph utilizes a variety of loss functions, but
in training the model, it utilizes a cross entropy loss function, referred to locally as the RecallLoss. This
is given by, as highlighed in Figure 3, the equation

L(6) = Avg;CE(yio(f(x:,9))) CE(p,p) = — sz- In(p;)

where x; is an input sample, y; is its associated event label and, 6 are the parameters of the model. The
function C'F is referred to as the cross-entropy, and it measures how accurately the model is able to predict
the true label of a given training sample. The cross-entropy takes as input p and p which represent the
models guess, and the true sample labels resprectively. Finally, the function o.

The utilization of cross-entropy is abundant across the deep learning field, and typically yields the
strongest training results [5]. This loss function, however, fails to take into account the relative frequency
of each sample. To highlight the consequences of this, consider a dataset which consists of 99% of one
sample type, and the remaining 1% of another. Then the model could simply label all samples as the
frequency dominant label, obtain 99% classification precision, and obtain an extremely low loss, likely only
a local minima within the loss landscape. To account for this, we implemented a weighted loss function;

N C
CEwezghted DD N Z Z WePi,c 1 pz c) (7)
i=1 c=1
where N is the total number of samples, and C' is the number of classes. In our case, C' = 4. Moreover, the

weight w; . is given by
N

8
nC (8)
where n, is the frequency of class ¢ within the entire sample. This weighted cross-entropy loss function
entices the model to pay more attention to minority classes or rare samples within the dataset during the

We =

training process. By assigning higher weights to underrepresented classes, the loss function effectively
penalizes the model more for misclassifications in these classes compared to the majority classes.
Consequently, the model is encouraged to improve its performance specifically on the minority classes,
aiming to reduce the misclassification rate and better capture the patterns present in these less frequent
samples. In essence, it helps address the issue of class imbalance by ensuring that the model does not
disproportionately favor the majority classes and instead learns to generalize well across all classes, leading

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 8

to a more balanced and accurate predictive model.

4.1.2 Model Expansion

As discussed in Section 4.1.1, the NuGraph encoders consist of sequentially-applied linear layers and
nonlinear tanh activations. This is explicitly displayed in Figure (2). The Encoder layer, which is directly
used and trained for event classification, consists of only a single linear layer, encapsulating 3500 model
parameters. In comparison to NexusNet, which is trained and optimized over 125,000 paramters, is
extremely low. Having such a comparably lower number of parameters, the model is subject to under
parameterization, meaning that there is not enough room for expresivity for the model to truly learn all
underlying patterns that appear across the dataset.

In efforts to increase exressivity, we doubled the depth of the encoder layer by introducing an additional
linear and nonlinear layer. In particular, the event encoder now consists of the following sequential layers;

z = tanh(Wy(tanh(Wyz + by)) + bs) 9)

By doubling the depth of the encoder, the model gains additional parameters and increased complexity,
enabling it to capture more nuanced features and relationships within the data. This approach aligns with
the scalability principle observed in graph neural networks, where increasing the model’s scale often leads
to improved performance across various tasks, as documented in prior research [3]. Overall, expanding the
depth of the model enhances its ability to learn and generalize from the data, ultimately improving its
performance in event classification tasks.

Furthermore, deeper networks can facilitate more effective gradient propagation during the training
process. Nearly all deep learning models are trained by adjusting the network parameters as to optimize
the loss function over the loss landscape. This is achieve by iteratively applying the gradient descent
algorithm. Networks which have a low number of parameters are highly subject to the vanishing gradient
problem in which the model gets trapped in a local minimum or saddle point, rather than the global
optimum. While shallow networks may suffer from the vanishing gradient problem, where gradients
diminish rapidly as they propagate through successive layers, deeper architectures can resolve this issue by
providing multiple pathways for error signals to flow backward through the network. This can result in
more stable and efficient training dynamics, allowing the model to converge to better optima and achieve
higher performance on the task at hand. In fact, the AdamW optimizer, which is the one utilized by
NuGraph, is a gradient descent algorithm specifically designed to handle a large number of parameters;
expanding the depth of NuGraph plays directly into the strengths of the chosen optimizer.

The AdamW optimizer offers several advantages that can be particularly beneficial in the context of deep
neural networks and addressing the vanishing gradient problem. One key advantage is its adaptive learning
rate mechanism, which dynamically adjusts the learning rates of individual model parameters based on
their historical gradients. This adaptive learning rate scheduling allows AdamW to effectively solve
complex optimization landscapes and converge to globally optimal solutions more efficiently, even in the
presence of vanishing gradients.

4.1.3 Frequency-Balanced Batches

As discussed in Section (3), NuGraph batches data according to the BalancedSampler, which prioritizes
maintaining the relative frequency of the entire dataset within each batch. For a batchsize of 32, this results
in 7-8 muon and electrong neutrino samples, 1 or 2 tau neutrino samples, and the remaining being filled
with neural current (NC) samples. As is displayed by the preformance of the original model, the model
being exposed to far fewer tau neutrino samples has sever impact on its ability to identify them. Obtaining
more tau samples is difficult, but also does not follow the true abundance of tau neutrinos in nature. In

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 9

order to yield strong event classification preformance on tau samples. we introduce a new sampling method.

To address the imbalance in the relative frequency of each class within the dataset, we employ a technique
known as random oversampling [4, 2], specifically targeting the tau samples. We introduce a new sampler,
called the FrequencySampler. By artificially suplementing the occurrence of tau samples during each
training epoch, we ensure that the model encounters each electron, muon, and neutral current (NC) sample
precisely once per epoch. In contrast, tau samples are presented to the model at a notably higher
frequency, approximately seven times per epoch.

This approach strategically exposes the model to tau samples more frequently, in turn enhancing its ability
to learn and generalize from this class of data. By increasing exposure to tau samples through
oversampling, we aim to improve the model’s training effectiveness on these smaples, ultimately seeking
improvements in its performance during testing and validation phases.

4.2 Results

Throughout this project, we trained both the original, unmodified NuGraph network taken directly from
the aforementioned Github, as well as numerous variations of this model. We successfully implemented
each of the above modifications in isolation, allowing the model to successfully train.

Before After

“10 -10

- 0.8 -08

0.068

cc_nutau

cc_nutau

True label
True label

cc_numu

cc_numu

cc_nue
cc_nue
f

U u 0.0 u
cc_nue cc_numu cc_nutau nc cc_nue _numu cc_nutau nc

Assigned label Assigned label

- 0.0

Figure 5: (Left) The precision matrix of the original model at the end of training. (Right) The precision matrix of
the modified model after 25 training epochs. A model with perfect precision would have a unit anti-diagonal with all
other entires being 0.

Included in Figure 5 is the precision matrix of the original model (left), and the modified model (right)
after introducing the changes highlighted in Sections 4.1.1 and 4.1.2. In particular, make note of the
anti-diagonal element of this matrix corresponding to tau samples being labelled correctly. The original
model’s results, which were observed at the end of training shows only a 35% when labelling tau samples.
With only four classes to choose from, this does not show much better prefomance than simply randomly
guessing (which would be represented by a prediction certainty of 25%). Moreover, the original model
labelled tau samples as such almost precisely as often as labelling as a NC. This highlights the issues noted
in Section 4.1.1 regarding the effect of having one class significantly dominate over another.

Following implementing the above modifications, the models’ prefomance on tau samples has significantly.
Specifically, after completely only 25 of the 80 epochs used to train the original model, we have observed a
significant boost in preformance, with the model correctly classifying tau samples 10% more frequently.

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 10

Before

n
"]
-]

-

-
=
o
>

w

0 200k 400k 600k 800k ™ 0 50k 100k 150k 200k 250k 300k

Iteration Iteration

Figure 6: (Left) The loss of the original model. A model with perfect precision would have a unit anti-diagonal with
all other entires being 0.

Figure 6 displays the loss over each iteration for both the original model (left) and the modified model
(right). Steadily decreasing loss is inidcative that the methods implemented above indeed work with the
existing NuGraph structure. Despite training for only a fraction of the original model’s duration, the
modified model exhibited a decreasing loss trend, indicating successful integration of the proposed methods
within the NuGraph framework. Even with limited training time, the modified model achieved record
minimum loss, indicative of high test performance.

Due to the considerable time and resources required for training this model, we were unable to conclude
the training process after implementing the FrequencyBatch module. Nonetheless, initial training results
suggest the method’s effectiveness. With more training time, we are confident that we would have observed
significantly improved overall performance, especially in classifying tau event samples. The challenges
encountered in completing the training highlight the resource-intensive nature of training deep learning
models, particularly with large datasets and numerous training epochs. Despite these challenges, the
observed enhancement in model performance with the FrequencyBatch module underscores its potential
for even greater impact with extended training.

5 Future Work

Moving forward, our focus will be on completing the training process with the FrequencyBatch module to
fully assess its effectiveness. We’ll also fine-tune model settings and explore ensemble learning methods to
boost predictive accuracy and reliability. Additionally, we’ll delve into advanced neural network designs
tailored to our dataset and include domain-specific features to further enhance model performance.
Ensuring that our model’s predictions are understandable and deployable in real-world scenarios remains a
priority, bridging the gap between theory and practical application.

Another promising direction for future work involves expanding the dataset by incorporating artificial data
from ProtoDUNE. This expansion aims to balance the relative frequency of each class, thereby enhancing
prediction performance. By continually exposing the model to a diverse range of samples from
ProtoDUNE, rather than processing the same ones repeatedly, we can improve its ability to generalize and
accurately classify tau neutrino events.

In summary, our contributions to the model could have the potential to significantly impact the DUNE
team’s ability to detect tau neutrinos following the completion of the entire experiment. By refining the
model’s training data and optimizing its performance, we aim to provide CERN and DUNE researchers
with a powerful tool for uncovering valuable insights from the experimental data collected by DUNE.

Murdock Aubry NUGRAPH: GNN FOR TAU NEUTRINO DETECTION Page 11

References

[

[2] Haseeb Ali et al. “A review on data preprocessing methods for class imbalance problem”. In: (Oct.
2019), pp. 390-397. por: 10.14419/ijet.v8i3.29508.

—

] B. Abi et al. “Volume III. Introduction to DUNE”. In: JINST 15 T08009 (2020).

[3] Ognjen Kundacina et al. Scalability and Sample Efficiency Analysis of Graph Neural Networks for
Power System State Estimation. 2023. arXiv: 2303.00105 [cs.LG].

[4] Roweida Mohammed, Jumanah Rawashdeh, and Malak Abdullah. “Machine Learning with
Oversampling and Undersampling Techniques: Overview Study and Experimental Results”. In: Apr.
2020, pp. 243-248. pot: 10.1109/ICICS49469.2020.239556.

[5] Zhilu Zhang and Mert R. Sabuncu. “Generalized Cross Entropy Loss for Training Deep Neural
Networks with Noisy Labels”. In: CoRR abs/1805.07836 (2018). arXiv: 1805.07836. URL:
http://arxiv.org/abs/1805.07836.

https://doi.org/10.14419/ijet.v8i3.29508
https://arxiv.org/abs/2303.00105
https://doi.org/10.1109/ICICS49469.2020.239556
https://arxiv.org/abs/1805.07836
http://arxiv.org/abs/1805.07836

	Project Summary
	Introduction
	Neutrino Physics
	Tau Neutrinos ()
	DUNE Colaboration

	NuGraph
	Model Architecture and Structure
	Model Training
	Shortcomings

	Model Refinements and Training Results
	Modifications
	Weighted Loss Function
	Model Expansion
	Frequency-Balanced Batches

	Results

	Future Work

