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Abstract
Oscillatory integrals are often handled by the classical Levin method which operates by solving a
particular differential equation for the antiderivative of the integrand. Recent works have displayed
that, although long believed to have suffered from l̈ow-frequency breakdown̈, the Levin method can
rapidly produce accurate solutions for all orders frequency if deployed properly. Recent experimental
evidence, shortly followed by theoretical proof, has shown that if Chebyshev spectral methods are used
to discretize the aforementioned differential equation and then the resulting linear system is solved via a
truncated singular value decomposition, then no low-frequency breakdown occurs.

In this paper, we generalize the previous algorithms and theoretical results from the one-dimensional
Levin method in order to evaluate integrals over two-dimensional domains. We provide two variants of
this generalization with distinct assumptions on the functions involved. Each of these variants operates
by solving a differential equation for the anti-divergence of the integrand. Under particular assumptions,
the resulting differential equation admits a slowly varying vector field solution, allowing the boundary
integral to be rapidly evaluated using one-dimensional Levin algorithm. We describe a method of
obviating the resonance problem by forcing alignment in vector field the solution with direction of
maximal normed frequency, ensuring maximal frequency along the boundary integral. We provide proof
that when the integrand is either slowly oscillating or even contains stationary points, the algorithm
does not suffer from low frequency breakdown. Extensive experiments testing these algorithms is
reported for a vast class of oscillatory integrals. The results highlight the high performance, efficiency
and robustness of these algorithms, further showing that in absence of low-frequency breakdown, the
two-dimensional Levin method is suitable for use as the basis of an adaptive scheme.

1 Introduction

First introduced by David Levin in [4], the Levin method is a classical technique for evaluating one-dimensional
integrals of the form ∫ b

a

f(x) exp(ig(x))dx, (1)

where f : R→ C is a slowly varying, possibly complex valued function, g : R→ R a slowly varying scalar valued
function, g′ is of large magnitude.
It operates by solving the first order ordinary differential equation

p′(x) + ig′(x)p(x) = f(x) (2)

which, under the above assumptions, admits and slowly varying solution p(x) such that

d

dx
(p(x) exp(ig(x))) = f(x) exp(ig(x)). (3)

The value of (1) is then given by
p(b) exp(ig(b))− p(a) exp(ig(a)). (4)

Recent work [5],[6] presents experimental evidence that if Chebyshev spectral methods are used to discretize (2),
and a truncated singular value decomposition is used to solve the system, then no frequency breakdown occurs.
Following this, [3] proved this to be the case, regardless of the magnitude or number of stationary points of g. Since
g′ need not be invertible, they further prove that the Levin equation admits a solution that can be approximated
by a polynomial expansion at a cost which decreases with the magnitude of g′. Finally, they implement an adaptive
algorithm and provide vast experimental results displaying the accuracy and robustness of this method.
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In this paper, we generalize the adaptive scheme discussed in [3] to handle two dimensional integrals over a
rectangle R ⊂ R2. Specifically, we handle integrals of the form

I =
∫

R

f(x, y) exp(ig(x, y))dxdy, (5)

where

• R = [a, b]× [c, d] a rectangle in the plane,

• f : R2 → C a scalar function on the plane and

• g : R2 → R a scalar function on the plane, slowly varying, and ∇g is of large magnitude.

The algorithm operates by solving the partial differential equation

∇ · p(x, y) + i∇g(x, y) · p(x, y) = f(x, y), (6)

where ∇g(x, y) is the gradient of the function g. Then the vector-valued solution p(x, y) =
(

p1(x, y)
p2(x, y)

)
to (6)

satisfies
∇ · (p(x, y) exp(ig(x, y))) = f(x, y) exp(ig(x, y)). (7)

Substituting this into integral (5) and applying the divergence theorem, we obtain the integral

I =
∫

∂R

p(x, y) exp(ig(x, y))dℓ(x, y) (8)

which can be written as

I =−
∫ b

a

p2(x, c) exp(ig(x, c))dx +
∫ d

c

p1(b, y) exp(ig(b, y))dy

+
∫ b

a

p2(x, d) exp(ig(x, d))dx−
∫ d

c

p1(a, y) exp(ig(a, y))dy

(9)

Similar to the one-dimensional case, the differential operator

L[p](x, y) = ∇ · p(x) + i∇g(x, y) · p(x, y) (10)

has a nullspace consisting of vector fields of the form

p(x, y) = q(x, y) exp(−ig(x, y)) (11)

where q is divergenceless; ∇ · q(x, y) = 0.
In this work, we prove that when bivariate Chebyshev spectral methods are used to discretize (6), and the resulting
linear system is solved via a truncated singular value decomposition, no low frequency breakdown occurs.
First, we prove that when ∇g is non-vanishing, the two-dimensional Levin equations admit well-behaved solutions
that can be approximated by bivariate polynomial expansions. We then consider the case where ∇g is of small
magnitude and possibly has zeroes, in which case ∇g is not invertible. We show that even in this case, the two
dimensional Levin method admits a well-behaved solution. These results generalizes the results of [3].
Note that the proofs of these results are negligibly dependent on the dimension of the ambient space. All theorems
and results can be trivially modified to obtain analogous results for the case where f, g : Rn → R for any value of n.
In this report, however, we exclusively present results pertaining to the case where n = 2.
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2 Preliminaries

2.1 Notation and Conventions

The use of capital scripted letters of the form A are reserved form matrices, and bold letters v reserved to denote
vectors. We denote by diag(v), for a vector v of length n, the n× n diagonal matrix with diagonal entries being the
components of v:

diag(v) =
(v1

. . .
vn

)
. (12)

Similarly, we denote by diagn(λ) for some constant λ the n× n diagonal matrix with diagonal entries uniformly λ:

diagn(λ) =

λ
. . .

λ

 . (13)

We denote by Br(a, b) the closed ball of radius r centred at the point (a, b) ∈ R2. That is,

Br(a, b) = {(x, y) ∈ R2 : (x− a)2 + (y − b)2 ≤ r2} (14)

We write Cn([a, b]) to denote the set of functions whose derivatives of orders up to or less than n are uniformly
continuous on the interval [a, b]. In the case where n =∞, Cn([a, b]) denotes the set of infinitely differentiable
functions whose derivatives are uniformly continuous on the interval [a, b]. We extend this notation to handle
multi-indices of the form f(x, y) ∈ C(n,m)(R) for some R ⊂ R2 to denote the fact that f is Cn in x and Cm in y for
(x, y) ∈ R.
We denote by S(Rn,Rm) the Schwartz space of infinitely differentiable functions f : Rn → Rm whose derivatives of
all orders decay faster than any polynomial, while reserving S(Rn) for the case where m = 1.
The space of tempered distributions is denoted by S′(Rn). For f ∈ S(Rn) and tempered distributions φ ∈ S′(Rn),
we write ⟨φ, f⟩ to denote the action of φ on f , given by the formula

⟨φ, f⟩ =
∫
R2

φ(x, y)f(x, y)dxdy. (15)

The order of a tempered distribution φ ∈ S(R) is the least non-negative integer N such that for all compact sets
K ⊂ R, there exists a constant MK such that

|⟨φ, f⟩| ≤MK sup
0≤k≤N

sup
x∈K

∣∣Dkf(x)
∣∣ (16)

for all f ∈ S(R) with supp(f) ⊂ K. Further, we introduce the double-index notation (N1, N2) to denote the order
of a tempered distribution φ ∈ S′(R2) which is of order N1 in the first variable and of order N2 in the second
variable. Explicitly, for all compact K ⊂ R2 there exists a constant MK such that

|⟨φ, f⟩| ≤MK sup
0≤k≤N1

sup
(x,y)∈K

∣∣Dk
xf(x, y)

∣∣ |⟨φ, f⟩| ≤MK sup
0≤k≤N2

sup
(x,y)∈K

∣∣Dk
yf(x, y)

∣∣ (17)

for every f ∈ S(R2) with supp(f) ⊂ K.
For a function f ∈ S(R2), we use the convention

f̂(ξ, y) = 1
2π

∫ ∞

−∞
f(x, y) exp(−iξx)dx (18)

for the Fourier transform of f in the variable x, and

f̂(x, y) =
∫ ∞

−∞
f(ξ, y) exp(iξx)dx (19)

the inverse Fourier transform. Formulas are given analogously for the Fourier transform in y. By extension, we
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utilize
f̂(ξ1, ξ2) = 1

4π2

∫
R2

f(x, y) exp(−i(ξ1x + ξ2y))dxdy (20)

for the Fourier transform of f in both variables, and

f(x, y) =
∫
R2

f̂(ξ1, ξ2) exp(i(ξ1x + ξ2y))dξ1dξ2 (21)

the inverse Fourier transform of f̂ in both variables.
Throughout, we utilize the notation x ≲ y to indicate there is some constant C independent of y such that x ≤ Cy.
We say that

f(x, y) = O(g(x, y)) as ∥(x, y)∥ → ∞ (22)

if there exists constants M and C such that

2.2 Bivariate Chebyshev expansions

We denote by Tn(x) the Chebyshev polynomial of degree n, and

−1 = xcheb
1,k < xcheb

2,k < · · · < xcheb
k,k = 1 (23)

the k−point grid of Chebyshev extremal nodes which are given by

xcheb
j,k = cos

(
π

k − j

k − 1

)
, j = 1, . . . , k. (24)

For the square R = [−1, 1]2, denote by
{xcheb

i,k , xcheb
j,k }k

i,j=1 (25)

the k × k tensor product Chebyshev extremal grid on R, where {xcheb
i,k }k

i=1 is the the k−point grid of Chebyshev
extremal nodes on the interval [−1, 1]. This extremal grid can be mapped to any rectangle [a, b]× [c, d] ⊂ R2 via
the affine bilinear mapping

L(x, y) =
(

b− a

2 x + b + a

2 ,
d− c

2 y + d + c

2

)
. (26)

For functions f ∈ C∞(R,C), we define Pn[f ] to be the bivariate Chebyshev series

Pn[f ] =
∑

0≤i+j<n

aijTi(x)Tj(y). (27)

which interpolates f at the nodes of the k × k−point Chebyshev tensor product extremal grid. If f ∈ C∞(R,C),
then it admits a uniformly convergent Chebyshev expansion

f(x, y) =
∞∑

i,j=0
bijTi(x)Tj(y). (28)

It is well known that Pn[f ] converges to f faster than any polynomial. In particular,

|bij | = O
(

1
iljk

)
(29)

for all l, k ≥ 1. Resultingly, for all 0 < ϵ < 1, we can choose n sufficiently large such that

∥Pn[f ]− f∥L∞(R) ≤ ϵ∥f∥L∞(R) and
∥∥∥∥ ∂

∂x
Pn[f ]− ∂

∂x
f

∥∥∥∥ ≤ ϵ∥f∥L∞(R). (30)
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By extension, it follows that

∥Pn[f ]∥L∞(R) ≤ 2∥f∥L∞(R) and
∥∥∥∥ ∂

∂x
Pn[f ]

∥∥∥∥
L∞(R)

≤ 2
∥∥∥∥∂f

∂x

∥∥∥∥
L∞(R)

. (31)

Moreover, for any two functions f, g ∈ C∞(R), we have the following inequality;

∥Pn[f ]Pn[g]− fg∥L∞(R) ≤ ∥Pn[f ]∥L∞(R)∥Pn[g]− g∥L∞(R) + ∥Pn[g]∥L∞(R)∥Pn[f ]− f∥L∞(R) (32)
≤ 4ϵ∥f∥L∞(R)∥g∥L∞(R) (33)

We utilize the notation [f ] to denote the vector

[f ] =



f(xcheb
1,k , ycheb

1,k )
f(xcheb

2,k , ycheb
1,k )

...
f(xcheb

k,k , ycheb
1,k )

f(xcheb
1,k , ycheb

2,k )
f(xcheb

2,k , ycheb
2,k )

...
f(xcheb

k,k , ycheb
k,k )


(34)

of values of an expansion of the form Pn[f ] at the tensor product extremal Chebyshev nodes on the rectangle R.
We represent the vector field F : R2 → R2, where

F(x, y) =
(

F1(x, y)
F2(x, y)

)
(35)

via the concatenated vector
[F] =

(
[F1]
[F2]

)
. (36)

The kth order bivariate Chebyshev partial spectral differentiation matrices are the k2 × k2 matrices Dk
x and Dk

y

which maps the vector [f ] to the vectors

[
∂f

∂x

]
=



∂f
∂x (xcheb

1,k , ycheb
1,k )

∂f
∂x (xcheb

2,k , ycheb
1,k )

...
∂f
∂x (xcheb

k,k , ycheb
1,k )

∂f
∂x (xcheb

1,k , ycheb
2,k )

∂f
∂x (xcheb

2,k , ycheb
2,k )

...
∂f
∂x (xcheb

k,k , ycheb
k,k )



[
∂f

∂y

]
=



∂f
∂y (xcheb

1,k , ycheb
1,k )

∂f
∂y (xcheb

2,k , ycheb
1,k )

...
∂f
∂y (xcheb

k,k , ycheb
1,k )

∂f
∂y (xcheb

1,k , ycheb
2,k )

∂f
∂y (xcheb

2,k , ycheb
2,k )

...
∂f
∂y (xcheb

k,k , ycheb
k,k )


(37)

of values of the partial derivatives of f at the tensor product Chebyshev extremal grid. That is,

Dk
x [f ] =

[
∂f

∂x

]
Dk

y [f ] =
[

∂f

∂y

]
. (38)
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2.3 Truncated singular value decomposition

If A is an complex-valued n×m matrix where n ≤ m, then any decomposition of the form

A =

 | |
u1 · · · un

| |


σ1

. . .
σn


 | |

v1 · · · vm

| |

T

, (39)

is referred to as a singular value decomposition of A . Here, σ1, . . . , σn ∈ R are singular values, and {u1, . . . , un}
and {v1, . . . , vm} are the left and right singular vectors which form orthonormal bases of Cn and Cm respectively.
The quantities {σi}n

i=1 are referred to as the singular values. They are unique up to ordering, and are
conventionally ordered in descending order.
A truncated singular value decomposition of the matrix A is any approximation of the form

A =

 | |
u1 · · · uk

| |


σ1

. . .
σk


 | |

v1 · · · vk

| |

T

, (40)

where 1 ≤ k ≤ n, and each ui ∈ Cn and vi ∈ Cm. An algorithm which computes the truncated singular value
decomposition takes as input some desired precision parameter ϵ > 0. The truncation integer k is then taken to be
the smallest integer between 1 and n− 1 such that σk < ϵ, or k = n otherwise. The approximate solution x̃ to the
linear system Ax = y is then taken to be

x̃ =

 | |
v1 · · · vk

| |




1
σ1

. . .
1

σk


 | |

u1 · · · uk

| |

T

y. (41)

The following lemma is a simplified version of Theorem 2.1 in [7].
Lemma 1. Suppose that ϵ > 0, and A is an n× n matrix with complex entires. Further, suppose

A x = y + δy (42)

for some x, y and δy ∈ Cn with
∥δy∥ ≲ ϵA ∥x∥. (43)

Suppose further that the linear system
A x = y (44)

is solved in finite precision arithmetic using a singular value decomposition which is truncated at precision ϵ∥A ∥,
and that z is the resulting solution. Then

∥z∥ ≲ ∥x∥ (45)

and
∥A z− y∥ ≲ ϵ∥A ∥∥x∥. (46)

The above lemma implies that when a linear system admits an approximate solution with a modest norm, a
truncated singular value decomposition can be used to obtain a solution with both a small residual and modest
norm.

2.4 Approximation by bandlimited functions

Throughout the analysis of the two-dimensional Levin equation, it will often be necessary to approximate a
function f : R→ R, where R = [−1, 1]2, via a well behaved bandlimited function fb on an open neighbourhood of
the domain of f . In this report, we take the term ’well-behaved’ to mean that the L∞(R2) norms of fb, f̂b and the
derivatives of f̂b are bounded by small constant multiples of the L∞(R) norm of f . To ensure a tight bound on the
approximation fb, it is often desirable to choose the minimal bandlimit subject to the above constraints.
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The existence of such a bandlimited function fb of f is provable under certain regularity conditions on f . The
following theorem is a dimensional generalization of Theorem 1 in [3], which itself is a slightly modified version of
Theorem 1 of [1]. The relatively weak conditions on f of this theorem is an example of sufficient regularity to
ensure existence of such a bandlimit fb.
Theorem 1. Suppose that f : R→ C admits an infinitely differentiable extension to an open neighbourhood of R.
Then for each positive integer m and each real number c > 1, there exists a constant k(m) independent of c, and a
function fb ∈ S(R2) such that

1. f̂b is supported on [−c− 2, c + 2]2,

2. ∥fb − f∥L∞(R) < k(m)
cm ,

3. ∥fb∥L∞(R2) ≤ 2∥f∥L∞(R) + k(m)
cm ,

4. ∥f̂b∥L∞(R2) ≤ ∥f∥L∞(R) and

5.
∥∥∥ ∂

∂ξi
f̂b

∥∥∥
L∞(R2)

≤ 2∥f∥L∞(R) for i = 1, 2.

Proof. Here, for simplicity, we prove the existence of such a bandlimited function in the case where f : B1(0, 0). Of
course, composing with a diffeomorphim F : R→ B1(0, 0) which admits a diffeomorphic extension to an open
neighbourhood of R, we obtain the results of Theorem (1). Explicitly, if f : R→ C admits an infinitely
differentiable extension to an open neighbourhood of R, then f ◦ F−1 : Br(0, 0)→ C admits an infinitely
differentiable extension to an open neighbourhood of Br(0, 0). An example of such a diffeomorphim could be given
by

F(x, y) =

 x
√

1− y2

2√
1− x2y2

4

,
y
√

1− x2

2√
1− x2y2

4

 . (47)

We begin by defining M = ∥f∥L∞(B1(0,0)) and let 0 < δ < 1 be so small such that

∥f∥L∞(B1+δ(0,0)) ≤ 2M. (48)

Moreover, we define a window function T1(x, y) ∈ C∞(R2) such that T1(x, y) = 1

T1(x, y) =
{

1, r ≤ 1,

0, r > 1 + δ,
(49)

where r =
√

x2 + y2 and |T (x, y)| ≤ 1 for all (x, y) ∈ R2. An example of such a function is

T1(x, y) =


1, r ≤ 1,

H
(

δ−1
δ −

r
δ

)
, 1 < r ≤ 1 + δ,

0, r > 1 + δ.

. (50)

where H(x) is the infinitely differentiable ramp function

H(x) =
{

1
2

(
1 + erf

(
x√

1−x2

))
, |x| ≤ 1,

0, |x| > 1.
. (51)

Now consider f1(x, y) = f(x, y)T1(x, y). Since f ∈ S(R2) and T1 is infinitely differentiable, it follows that both
f1, f̂1 ∈ S(R2). Therefore, f̂1 is rapidly decaying, providing us with the following inequality;

sup
|ξ|≥1

∣∣∣f̂1(ξ1, ξ2)
∣∣∣ ≤ k1(m)
|ξ|m+2 , (52)
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where ξ = (ξ1, ξ2). Since |T1(x, y)| ≤ 1, it follows that |f1(x, y)| ≤ 2M for all (x, y) ∈ R. We compute

∣∣∣f̂1(ξ1, ξ2)
∣∣∣ =

∣∣∣∣∣ 1
4π2

∫
B1+δ(0,0)

f1(x, y) exp (−i(ξ1x + ξ2y)) dxdy

∣∣∣∣∣ (53)

≤ 1
4π2 2M(1 + δ)2π (54)

≤ 2M

π
. (55)

Similarly, ∣∣∣∣ d

dξ1
f̂1(ξ1, ξ2)

∣∣∣∣ =
∣∣∣∣∣ −i

4π2

∫
B1+δ(0,0)

f1(x, y)x exp (−i(ξ1x + ξ2y)) dxdy

∣∣∣∣∣ ≤ 4M

π
, (56)

∣∣∣∣ d

dξ2
f̂1(ξ1, ξ2)

∣∣∣∣ =
∣∣∣∣∣ −i

4π2

∫
B1+δ(0,0)

f1(x, y)y exp (−i(ξ1x + ξ2y)) dxdy

∣∣∣∣∣ ≤ 4M

π
. (57)

We now define a second windowing function T2 ∈ C∞(R2) such that

1. |T2(x, y)| ≤ 1 for all (x, y) ∈ R2,

2.
∣∣ d

dx T2(x, y)
∣∣ ≤ 1 and

∣∣ d
dx T2(x, y)

∣∣ ≤ 1 for all (x, y) ∈ R2,

3. T2(x, y) = 1 for all r ≤ c and

4. T2(x, y) = 0 for all r > c + 1.

Once again, an example of such a function can be constructed by utilizing the ramp function discussed above.
Explicitly, take

T2(x, y) =


1, r ≤ 1,

H
(

c−1
c −

r
c

)
, 1 < r ≤ 1 + c,

0, r > 1 + c.

(58)

Since c > 1, it follows that property 2 of T2 holds. Now, by defining

f̂b(ξ1, ξ2) = f̂1(ξ1, ξ2)T2(ξ1, ξ2), (59)

property 1 is immediately satisfied. Recalling the inequality (52) and that |T2(x, y)| ≤ 1, it follows that

|f1(x, y)− fb(x, y)| =
∣∣∣∣ 1
4π2

∫
R2

f̂1(ξ1, ξ2) (1− T2(ξ1, ξ2)) exp(i(ξ1x + ξ2y))dξ1dξ2

∣∣∣∣ (60)

≤ 1
2π2

∫
|ξ|>c

∣∣∣f̂1(ξ1, ξ2)
∣∣∣ dξ1dξ2 (61)

≤ 1
2π2

∫
|ξ|>c

k1(m)
|ξ|m+2 dξ1dξ2 (62)

= 1
2π2

∫
r>c

k1(m)
rm+2 r cos2 θdrdθ (63)

= k1(m)
2πmcm

. (64)

If we let k(m) = k1(m)
2πm , conclusion 2 of the theorem follows immediately. Combining the above with the fact that
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|f1(x, y)| ≤ 2M , we obtain property 3. Finally,∣∣∣f̂b(ξ1, ξ2)
∣∣∣ =

∣∣∣f̂1(ξ1, ξ2)T2(ξ1, ξ2)
∣∣∣ ≤ 2M

π
, (65)∣∣∣∣ ∂

∂ξi
f̂b(ξ1, ξ2)

∣∣∣∣ =
∣∣∣∣ ∂

∂ξi
f̂1(ξ1, ξ2)T2(ξ1, ξ2) + f̂1(ξ1, xi2) ∂

∂ξi
T2(ξ1, ξ2)

∣∣∣∣ ≤ 2M

π
+ 4M

π
= 6M

π
(66)

for i = 1, 2 establishes properties 4 and 5 of fb above.

Definition 1. Suppose that f : R→ C admits an infinitely differentiable extension to an open neighbourhood of
R. Then for each 0 < ϵ < 1, we denote by cf (ϵ) the smallest positive real number c such that there exits a function
fb ∈ S(R2) of bandlimit c such that

1. ∥fb − f∥L∞(R) < ϵ∥f∥L∞(R),

2. ∥fb∥L∞(R2) ≤ 4∥f∥L∞(R),

3. ∥f̂b∥L∞(R2) ≤ ∥f∥L∞(R) and

4.
∥∥∥ ∂

∂ξi
f̂b

∥∥∥
L∞(R2)

≤ 2∥f∥L∞(R) for i = 1, 2.

Of course, the existence of such a bandlimited function fb of the function f : R→ C with associated bandlimit
cf (ϵ) is provided by Theorem (1).
The following result is an immediate consequence of Theorem (1).
Corollary 1. If f : R→ R admits an infinitely differentiable extension to a neighbourhood of R, then for every
positive integer m,

cf (ϵ) = O
((

1
ϵ

) 1
m

)
as ϵ→ 0. (67)

2.5 Bivariate Legendre expansions of bandlimited functions

Throughout this subsection, we use the notation Pk(x) to denote the Legendre polynomial of degree k. Moreover,
we let R = [−1, 1]2.
Lemma 2. If φ is a tempered distribution of order (N, 0) which has support contained in some rectangle
R = [−c, c]2 for c > 0, then there exist one dimensional complex Radon measures {νk}N−1

k=0 on [−c, c] and a complex
Radon measure µ on R such that

⟨φ, f⟩ =
N−1∑
k=0

∫ c

−c

∂kf

∂xk
(0, y)dνk(y) +

∫
R

∂N f

∂xN
(x, y)dµ(x, y) (68)

for all f(x, y) ∈ C(N,0)(R).

Proof. Since the space of tempered distributions of order (N, 0) which are supported on R can be identified as the
dual space of C(N,0)(R), it suffices to show that any element of the dual of C(N,0)(R) is of the form (68). The case
where N = 0 follows from a trivial application of the Riesz representation theorem, so suppose that N ≥ 1. Define
hk(y) : [−c, c]→ R by

hk(y) = ∂kf

∂xk
(0, y). (69)

Since any function f ∈ C(N,0)(R) can be written as

f(x, y) =
N−1∑
k=0

hk(y)xk

k! + 1
(N − 1)!

∫ x

0

∂N f

∂xN
(u, y)uN−1du, (70)

the map

f →
(

h0(y), h1(y), . . . , hN−1(y), ∂N f

∂xN

)
(71)



Aubry, Serkh, Bremer Page 10

is an isomorphism C(N,0)(R)→ ΠN (C0[−c, c])× C(R) where C(R) is the space of uniformly continuous functions
on R. The result follows by observing that the dual of C(R) is the space of complex Radon measures M(R) and
the dual of C0([−c, c]) is the space of complex Radon measures M([−c, c])

Lemma 3. If the Fourier transform of a tempered distribution is of order (N, 0) and has support contained in a
rectangle R = [−c, c]2, then φ can be expressed as an entire function of the form

φ(x, y) =
N−1∑
k=0

xk

∫ c

−c

ik exp(iyξ2)dνk(ξ2) + xN

∫
R

iN exp (i(ξ1x + ξ2y)) dµ(ξ1, ξ2), (72)

where µ ∈M(R).

Proof. The tempered distribution φ is given by

φ(x, y) = ⟨φ̂, ξ(x,y)⟩ (73)

where
ξ(x,y)(ξ1, ξ2) = exp (i(ξ1x + ξ2y)) (74)

Then the result follows immediately from Lemma (3).

The following Lemma is taken directly from [3], and is restated here for convenience.
Lemma 4. For all real-valued ξ and non-negative integers k,

|exp(iξx)Pk(x)| ≤
2
∣∣∣ ξ

2

∣∣∣k
Γ(k + 1) (75)

Theorem 2. Suppose that the Fourier transform of φ ∈ S′(R2) is a tempered distribution of order (N, 0) supported
on [−c, c]2 where c ≥ 1. Then φ is an entire function and the coefficients of the Legendre expansion

φ(x, y) =
∞∑

l,m=0
almPl(x)Pm(y) (76)

of φ satisfy

|alm| ≲
(

c
2
)l+m+N

Γ(l −N + 1)Γ(m + 1) . (77)

for all l ≥ N .

Proof. Let Rc = [−c, c]2. By Lemma (3),∫
R

φ(x, y)Pl(x)Pm(y)dxdy =
∫

R

(
N−1∑
k=0

xk

∫ c

−c

ik exp(iyξ2)dνk(ξ2)
)

Pl(x)Pm(y)dxdy + (78)∫
R

(∫
Rc

exp (i(ξ1x + ξ2y)) xN Pl(x)Pm(y)dµ(ξ1, ξ2)
)

dxdy. (79)

=
N−1∑
k=0

(∫ 1

−1
xkPl(x)dx

)(∫ 1

−1

∫ c

−c

ik exp(iyξ2)dνk(ξ2)
)

+ (80)

∫
Rc

((∫ 1

−1
xN exp(ixξ1)Pl(x)dx

)(∫ 1

−1
exp(ixξ1)Pm(y)dy

))
dµ(ξ1, ξ2). (81)

Since, for l ≥ N , ∫ 1

−1
xkPl(x)dx = 0, (82)
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for all k < l, it follows that∣∣∣∣∫
R

φ(x, y)Pl(x)Pk(y)dxdy

∣∣∣∣ ≤ |µ|(Rc) max
(ξ1,ξ2)∈Rc

∣∣∣∣∫ 1

−1
exp(iξ1x)xN Pl(x)dx

∣∣∣∣ ∣∣∣∣∫ 1

−1
exp(iξ2y)Pk(y)dy

∣∣∣∣ . (83)

A direct application of Lemma (4) yields∣∣∣∣∫ 1

−1
exp(iξ2y)Pk(y)dy

∣∣∣∣ ≤ 2
∣∣ c

2
∣∣k

Γ(k + 1) (84)

for |ξ2| ≤ c. Substituting

xN Pk(l) =
m+N∑

k=m−N

bkPk(x), (85)

into (85), where

bk =
√

k + 1
2

∫ 1

−1
xN Pk(x)dx, (86)

in conjuction with Lemma (4), yields

∣∣∣∣∫ 1

−1
exp(iξ1x)xN Pl(x)dx

∣∣∣∣ ≤ l+N∑
k=l−N

2|bk|
∣∣∣ ξ1

2

∣∣∣l+N

Γ(l + 1) ≤
(4N + 2) max{|bk|}

(
c
2
)l+N

Γ(l −N + 1) (87)

for all |ξ1| ≤ c. Combining this result with (84) and (83) yields (77).

3 Analysis of the Levin Equation

In this section, we prove the existence of a non-oscillatory solution to the two-dimensional Levin equation

∇ · p(x, y) + i∇g(x, y) · p(x, y) = f(x, y). (88)

on the domain R regardless of the magnitude of ∇g. Our theorems apply even in the case where g has a stationary
point. Equation (88) is a scalar equation whose unknown is a vector field of two components. As a result, we are
free to impose an additional relationship between the components of p. For instance, we can assume that p is of
the form

p(x, y) = v(x, y)p(x, y) (89)

for a given v(x, y) and unknown p : R2 → C. In this section, we prove that when p takes the form

p(x, y) =
(

p(x, y)
0

)
, (90)

there exists a non-oscillatory solution regardless of the magnitude of ∂g
∂x . In fact, it is easy to see that this result

holds for any choice of constant v, since the theorem can be applied on a larger rectangular domain containing R,
which has been rotated so that one of the sides is aligned with v. This observation can be exploited numerically to
accelerate the Levin method by choosing an appropriate v–see our discussion in Section (4.1).
Imposing the restriction (90) results in the equation

∂p

∂x
(x, y) + i

∂g

∂x
(x, y)p(x, y) = f(x, y), (91)

which, for each y ∈ [−1, 1], reduces to the one dimensional Levin equation (2). We begin our analysis of (91) by
considering the case where ∂g

∂x is constant. That is, we show the existence of a non-oscillatory solution to

∂

∂x
p(x, y) + iω1p(x, y) = f(x, y). (92)
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This reduces the differential equation to the one which appears in [3].
For the remainder of this section, let R = [−1, 1]2, and let Ry = [−1, 1]× {y}.
Lemma 5. Suppose that f : R→ C admits an infinitely differentiable extension to an open neighbourhood of R,
and ω1 ̸= 0. Then for each 0 < ϵ < 1, there exists a function pb ∈ S(R2) such that

1. p̂b(ξ1, ξ2) is a tempered distribution of order (1, 0) supported on [−cf (ϵ), cf (ϵ)]2,

2.
∣∣∣∂pb

∂x (x, y) + iω1pb(x, y)
∣∣∣ ≤ ϵ∥f∥L∞(R) for all (x, y) ∈ R,

3. ∥pb∥L∞(R) ≲ min
{

1, 1
|ω1|

}
∥f∥L∞(R) and

4.
∥∥ ∂

∂x pb

∥∥
L∞(R) ≲ min

{
1, 1

|ω1|

}
∥f∥L∞(R).

Proof. We let fb ∈ S(R2) be a function with a bandlimit W0 = cf (ϵ) which adheres to all conditions in Definition
(1) and define pb via the formula

pb(x, y) =
∫ W0

−W0

[
p.v.

∫ W0

−W0

f̂b(ξ1, ξ2)
i(ξ1 + ω1) exp(i(ξ1x + ξ2y))dξ1

]
dξ2. (93)

It is clear that pb is a tempered distribution of order (1, 0), so condition (1) above holds. Moreover, it follows that

∂pb

∂x
(x, y) + iω1pb(x, y) =

∫ W0

−W0

[
p.v.

∫ W0

−W0

i(ω1 + ξ1)f̂b(ξ1, ξ2)
i(ω1 + ξ1) exp(i(ξ1x + ξ2y))dξ1

]
dξ2 = fb(x, y). (94)

Recalling from Definition (1) that
∥f − fb∥L∞(R) ≤ ϵ∥f∥L∞(R), (95)

condition (2) above immediately follows. By taking the inverse Fourier transform in the variable ξ2 in (93), we
obtain the following formula

pb(x, y) = p.v.
∫ W0

−W0

f̂b(ξ1, y)
i(ξ1 + ω1)eixξ1dξ1. (96)

We now apply Lemma 4 from [3] to see that the bounds

∥pb∥L∞(Ry) ≲ min
{

1,
1
|ω1|

}
∥f∥L∞(Ry) and (97)∥∥∥∥ ∂

∂x
pb

∥∥∥∥
L∞(Ry)

≲ min
{

1,
1
|ω1|

}
∥f∥L∞(Ry). (98)

hold for each y ∈ [−1, 1]. Conclusions (3) and (4) follow by taking the supremum over y ∈ [−1, 1] of equations (97)
and (98).

The proceeding lemma provides a bound on the error of the approximate solution p in the case where ∂g
∂x is

constant. We now consider (91) in the case where ∂g
∂x is non-constant but does not have stationary points. As with

the constant coefficient case, the coefficient ∂g
∂x can be arbitrarily small in magnitude. We suppose that f : R→ C

and g : R→ R admit infinitely differentiable extensions to open neighbourhoods of R and that the extension of ∂g
∂x

is non-zero on this open domain containing R.
For each y ∈ [−1, 1], we define

W (y) = 1
2

∫ 1

−1

(
∂g

∂x
(x, y)

)
dx. (99)

and let

W− = min
y
{W (y)} and W+ = max

y
{W (y)}. (100)
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Moreover, we define
G0 = min

(x,y)∈R

∣∣∣∣∂g

∂x
(x, y)

∣∣∣∣ . (101)

Further, for each y ∈ [−1, 1], we let u(y) : Ry → Ry be given by the formula

u(y)(x) = −1 + 1
W (y)

∫ x

−1

(
∂g

∂x
(x, y)

)
dx. (102)

Noting that since ∂g
∂x is non-zero in an open neighbourhood of R, it follows that, for each y in an open

neighbourhood of [−1, 1], u(y) is invertible and its inverse extends to an open neighbourhood of [−1, 1]. Finally, let
h : R→ R be defined by

h(z, y) =
f
(
(u(y))−1(z), y

)
∂u(y)

∂x

(
(u(y))−1(z)

) . (103)

Under the above assumptions and notations, we have the following:
Theorem 3. For every 0 < ϵ < 1, there exists a function pb : R→ C such that

1. The Fourier transform of pb((uy)−1(z), y) is a tempered distribution of order (1, 0) supported on
[−ch(ϵ), ch(ϵ)]2 where h is defined via (103),

2.
∣∣∣∂pb

∂x (x, y) + i ∂g
∂x (x, y)pb(x, y)− f(x, y)

∣∣∣ ≲ ϵ |W+|
G0
∥f∥L∞(R) for all (x, y) ∈ R,

3. ∥pb∥L∞(R) ≲
|W+|
G0

min
{

1, 1
|W−|

}
∥f∥L∞(R),

4.
∥∥∥∂pb

∂x

∥∥∥
L∞(R)

≲ |W+|
G0

min
{

1, 1
|W−|

}
∥f∥L∞(R).

Proof. By substituting the variable z = u(y)(x) into (91) and noting that

∂g

∂x
(x, y) = W (y) ∂u(y)

∂x
(x), (104)

we obtain

∂p

∂z
(z, y) + iω1p(z, y) = h(z, y) (z, y) ∈ R. (105)

Since both f and g admit infinitely differentiable extensions to open neighbourhoods of R, u(y) and h do as well.
This means we can applying Lemma (5) to (105), which shows that there exists an entire function p1(z, y) such that

1. p̂1(ξ1, ξ2) is a tempered distribution of order (1, 0) supported on [−ch(ϵ), ch(ϵ)]2,

2.
∣∣∣∂p1

∂z (z, y) + iW+p1(z, y)
∣∣∣ ≲ ϵ∥h∥L∞(R) for all (z, y) ∈ R,

3. ∥p1∥L∞(R) ≲ min
{

1, 1
|W−|

}
∥h∥L∞(R) and

4.
∥∥∥∂p1

∂x

∥∥∥
L∞(R)

≲ min
{

1, 1
|W−|

}
∥h∥L∞(R).

Now, by defining pb(x, y) by the formula pb(x, y) = p1(u(y)(x), y), it is clear that the first conclusion of this theorem
is satisfied. The other conclusions of the theorem follow from

∥h∥L∞(R) =
∥∥∥∥∥
(

∂u(y)

∂z

)−1∥∥∥∥∥
L∞(R)

∥f∥L∞(R) ≤
|W+|
G0
∥f∥L∞(R) (106)

and the properties of p1 listed above.
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It is important to note that Theorem 3 does not imply that the Fourier transform of the approximate solution pb of
the two dimensional Levin equation has compact support. Instead, it only shows that

pb = ⟨p̂1, η(x,y)⟩, (107)

where p̂1 is a tempered distribution of order (1, 0) which is compactly supported and

η(x,y)(ξ1, ξ2) = exp (i(ξ1uy(x) + ξ2y)) . (108)

Since pb is the composition of the entire function p1 and the infinitely differentiable function uy, the magnitude of
the coefficients {aij} of the bivariate Legendre expansion decay faster than any polynomial. Moreover, (107)
implies that pb can be approximated at fixed relative precision via a Legendre expansion at a cost independent of
the magnitude of ∂g

∂x . This is clear since h is defined only in terms of f and the normalized version uy of g, so that
ch(ϵ) is independent of the magnitude of ∂g

∂x . As a result, the bandlimit of p1 is independent of the magnitude of
∂g
∂x , and by extension, so is pb.

Our final theorem of this section applies whenever ∂g
∂x is of small magnitude, regardless of whether it vanishes or not.

Theorem 4. Suppose that both f : R→ C and g : R→ R admit infinitely differentiable extensions to open
neighbourhoods of R, and that

G1 = min
(x,y)∈R

∣∣∣∣∂g

∂x

∣∣∣∣ <
1
2 . (109)

Let 0 < ϵ < 1 be given, and define an integer N given by

N =
⌊

log(ϵ)
log(2G1)

⌋
. (110)

Then there exists a function pb ∈ C∞(R2) such that

1. The Fourier transform of pb is a tempered distribution of order (1, 0) supported on the domain

[−cf (ϵ)−Nc∂g/∂x(ϵ), cf (ϵ) + Nc∂g/∂x(ϵ)]2, (111)

2.
∣∣∣∂pb

∂x (x, y) + i ∂g
∂x (x, y)bp(x, y)− f(x, y)

∣∣∣ ≤ 2ϵ
(

1 + G1
1−2G1

)
∥f∥L∞(R) for all (x, y) ∈ R,

3. ∥pb∥L∞(R) ≤ 2
1−2G1

∥f∥L∞(R) and

4.
∥∥∥∂pb

∂x

∥∥∥
L∞(R)

≤ 4
(

1 + G1
1−2G1

)
∥f∥L∞(R).

Proof. We let fb and ∂gb

∂x denote the bandlimited functions of f and ∂g
∂x which satisfy the requirements of Definition

1. In particular, we note that ∥fb∥L∞(R) ≤ (1 + ϵ)∥f∥L∞(R). Define the functional operator A : L∞(R)→ L∞(R)
via the formula

A[φ](x, y) =
∫ x

0

∂gb

∂x′ (x′, y)φ(x′, y)dx′. (112)

Moreover, let
h(x, y) =

∫ x

0
f(x′, y)dx′ (113)

and

pb(x, y) =
N∑

k=0
Ak[h](x, y), (114)

where A0 is the identity and Ak denotes repeated application of the operator A. Clearly,

∥A∥∞ ≤
∥∥∥∥∂gb

∂x

∥∥∥∥
L∞(R)

≤ G2 < 1, (115)
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so

∥pb∥L∞(R) ≤

(
N∑

k=0
∥A∥k

∞

)
∥h∥L∞(R) (116)

≤ 1 + GN+1
2

1−G2
∥f∥L∞(R) (117)

≤ 1 + ϵ

1− 2G1
∥f∥L∞(R). (118)

Conclusion (2) of the theorem follows. Now it follows from (114) that

∂

∂x
A0[h](x, y) = ∂h

∂x
(x, y) = fb(x, y), (119)

∂

∂x
Ak[h](x) = −i

∂gb

∂x
Ak−1[h](x, y) for k ≥ 1. (120)

Therefore,

∂pb

∂x
(x, y) = fb(x, y)− i

∂gb

∂x
(x, y)

N−1∑
k=0

Ak[h](x, y) (121)

= fb(x, y)− i
∂gb

∂x
(x, y)

N∑
k=0

Ak[h](x, y) + i
∂gb

∂x
(x, y)AN [h](x, y) (122)

= fb(x, y)− i
∂g

∂x
(x, y)pb(x, y) + i

∂gb

∂x
(x, y)AN [h](x, y) (123)

for all (x, y) ∈ R. Further, (123) implies∥∥∥∥∂pb

∂x

∥∥∥∥
L∞(R)

≤ ∥fb∥L∞(R) +
∥∥∥∥∂gb

∂x

∥∥∥∥
L∞(R)

∥pb∥L∞(R) + 2ϵ∥fb∥L∞(R) (124)

≤
(

(1 + ϵ) + G1
2

1− 2G1
+ 2ϵ

)
∥f∥L∞(R) (125)

≤
(

4 + 2G1

1− 2G1

)
∥f∥L∞(R), (126)

which shows conclusion (3) in the statement of the theorem. Again utilizing (123),∣∣∣∣∂pb

∂x
(x, y) + i

∂gb

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣ ≤ ∣∣∣∣∂pb

∂x
(x, y) + i

∂gb

∂x
(x, y)pb(x, y)− fb(x, y)

∣∣∣∣+ |fb(x, y)− f(x, y)| (127)

≤
∣∣∣∣i∂gb

∂x
(x, y)AN [h](x, y)

∣∣∣∣+ ϵ∥f∥L∞(R) (128)

≤ (1 + ϵ)N+1GN+1
1 ∥fb∥L∞(R) + ϵ∥f∥L∞(R) (129)

≤ 2ϵ∥fb∥L∞(R). (130)

Applying both (118) and (126), we obtain∣∣∣∣∂pb

∂x
(x, y) + i

∂g

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣ ≤ ∣∣∣∣∂pb

∂x
(x, y) + i

∂gb

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣+ (131)∣∣∣∣i∂gb

∂x
(x, y)pb(x, y)− i

∂g

∂x
(x, y)pb(x, y)

∣∣∣∣ (132)

≤ 2ϵ∥f∥L∞(R) + ϵ∥pb∥L∞(R)

∥∥∥∥∂g

∂x

∥∥∥∥
L∞(R)

(133)

≤
(

2 + 2G1

1− 2G1

)
ϵ∥f∥L∞(R), (134)
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which establishes the second conclusion. It remains to prove the first conclusion. We first observe that the Fourier
transform of the function h, as defined in (113), is given by

ĥ(ξ1, ξ2) = 1
4π2

∫ ∞

−∞

∫ ∞

−∞

[∫ x

0
fb(x′, y)dx′

]
exp(i(xξ1 + yξ2))dxdy (135)

= p.v. f̂b(ξ1, ξ2)
iξ1

+ δ(ξ1)
2π

(∫ ∞

0
f̂b(x, ξ2)dx +

∫ 0

−∞
f̂b(x, ξ2)dx

)
(136)

where δ(ξ1) is the Dirac-Delta distribution. Clearly, (136) is a tempered distribution of order (1, 0) supported on
the domain [−cf (ϵ), cf (ϵ)]2. Note that if the Fourier transform of a function φ ∈ C∞(R2) is a tempered distribution
of order (1, 0) supported on the domain [−c, c]2, then it’s convolution with the function ∂gb

∂x ∈ S(R2) is a tempered
distribution of order (0, 0) supported on the domain [−c− c∂g/∂x(ϵ), c + c∂g/∂x(ϵ)]2. Note that A[φ] is the integral
over x of the aforementioned convolution, and hence its Fourier transform is a tempered distribution of order (1, 0)
supported on the same domain. It follows inductively that, for all k, the Fourier transform of Ak[h] is a tempered
distribution of order (1, 0) with support on the domain

[−cf (ϵ)− kc∂g/∂x(ϵ), cf (ϵ) + kc∂g/∂x(ϵ)]2. (137)

Combining the above with (114) yields the first conclusion, and completes our proof.

4 Numerical Aspects of the Levin Method

In this section, we give an argument which shows that when the Levin equation (91) is discretized using a bivariate
Chebyshev spectral collocation method and the resulting linear system is solved via a truncated singular value
decomposition, a high-accuracy solution is obtained, regardless of the magnitude of ∂g

∂x or whether or not it has
stationary points. Here, we represent the solution p using a bivariate Chebyshev expansion of order n which utilizes
M = (n+1)(n+2)

2 basis functions. However, we require that the Levin equation holds on the nodes of a Chebyshev
tensor product quadrature of order

k =
⌈√

2M
⌉

. (138)

We take this approach since the Levin equation involves the product of ∂g
∂x and p, which is represented by a

bivariate Chebyshev expansion of order 2M . While the rigorous bounds presented here depend on the value of k
given by (138), in practice there is negligible impact of imposing conditions on only l collocation nodes, where l
slightly exceeds M .
We begin by providing an analysis on the error of the computed integral value under the assumption that ∂g

∂x is
strictly non-zero. Following this, we treat the case in which ∂g

∂x is of small magnitude on the solution domain,
possibly with zeroes. Finally, we close this section by discussing how a particular choice of v from (90) can be used
to numerically accelerate the Levin method.
Throughout this section, we suppose that f : R→ C and g : R→ R admit infinitely differentiable extensions to
open neighbourhoods of R, and that 0 < ϵ < 1. Moreover, we define

G0 = min
(x,y)∈R

∣∣∣∣∂g

∂x
(x, y)

∣∣∣∣ and G1 = max
(x,y)∈R

∣∣∣∣∂g

∂x
(x, y)

∣∣∣∣ , (139)

as well as

W− = 1
2 min

y∈[−1,1]

∫ 1

−1

(
∂g

∂x
(x, y)

)
dx and W+ = 1

2 max
y∈[−1,1]

∫ 1

−1

(
∂g

∂x
(x, y)

)
dx. (140)

We first suppose that G0 > 0; among other things, this assumption ensures that there are no zeroes of ∂g
∂x in R.By

Theorem 3, there exists a bandlimited function pb : R→ C such that∣∣∣∣∂pb

∂x
(x, y) + i

∂g

∂x
(x, y)pb(x, y)− f(x, y)

∣∣∣∣ ≲ ϵ
|W+|
G0
∥f∥L∞(R) for all (x, y) ∈ R, (141)
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∥pb∥L∞(R) ≲
|W+|
G0

min
{

1,
1
|W−|

}
∥f∥L∞(R), (142)∥∥∥∥∂pb

∂x

∥∥∥∥
L∞(R)

≲
|W+|
G0

min
{

1,
1
|W−|

}
∥f∥L∞(R). (143)

It follows from the discussion in Section 2.2 that we can choose an integer n independent of |W+|, |W−| and G1
such that

∥Pn[f ]− f∥L∞(R) ≤ ϵ∥f∥L∞(R), (144)∥∥∥∥Pn

[
∂g

∂x

]
− ∂g

∂x

∥∥∥∥
L∞(R)

≤ ϵ

∥∥∥∥∂g

∂x

∥∥∥∥
L∞(R)

, (145)

∥Pn[pb]− pb∥L∞(R) ≤ ϵ∥pb∥L∞(R). (146)

If 0 < ϵ < 1, then ∥∥∥∥Pn

[
∂g

∂x

]∥∥∥∥
L∞(R)

≤ 2
∥∥∥∥∂g

∂x

∥∥∥∥
L∞(R)

, (147)

∥Pn[pb]∥L∞(R) ≤ 2∥pb∥L∞(R). (148)

The above inequalities together with (33) show that we can choose integer n so that∥∥∥∥ ∂

∂x
Pn[pb] + iPn

[
∂g

∂x

]
Pn[pb]−

(
∂pb

∂x
+ i

∂g

∂x
pb

)∥∥∥∥
L∞(R)

≤ ϵ

∥∥∥∥∂pb

∂x

∥∥∥∥
L∞(R)

+ 4ϵG1 ∥pb∥L∞(R) (149)

≲ ϵ (1 + 4G1) |W+|
G0

min
{

1,
1
|W−|

}
∥f∥L∞(R). (150)

Combining (141) and (150), we obtain∣∣∣∣ ∂

∂x
Pn[pb](x, y) + Pn

[
∂g

∂x

]
(x, y)Pn[pb](x, y)− f(x, y)

∣∣∣∣ ≲ ϵ

(
1 + (1 + G1) min

{
1,

1
|W−|

})
|W+|
G0
∥f∥L∞(R) (151)

for all (x, y) ∈ R.
We define the k2 × k2 matrix G via

G = diag
[

∂g

∂x

]
(152)

where k is given by (138). It follows from (151) that

(Dk
x + iG )[pb] = [f ] + [δ], (153)

where
∥[pb]∥ ≲ |W+|

G0
min

{
1,

1
|W−|

}
∥f∥L∞(R) (154)

and
∥[δ]∥ ≲ ϵ

(
1 + (1 + G1) min

{
1,

1
|W−|

})
|W+|
G0
∥f∥L∞(R). (155)

The bounds on ∥[pb]∥ and ∥[δ]∥ are consequence of (142) and (151), respectively. It follows from (154) and (155), as
well as the obvious inequality ∥∥Dk

x + iG
∥∥ ≤ max

{
G1, k2} , (156)

that
∥[δ]∥ ≲ ϵ max{G1, k2}∥[pb]∥. (157)

By Lemma 1, solving the linear system
(Dk

x + iG)[p1] = [f ] (158)
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via a singular value decomposition truncated at precision on the order of ϵ∥Dk
x + iG ∥ yields a solution [p1] such that

[p1] ≲ [pb] ≲ |W+|
G0

min
{

1,
1
|W−|

}
∥f∥L∞(R) (159)

and therefore

∥(Dk
x + iG )[p1]− [f ]∥ ≲ ∥Dk

x + iG ∥∥[p1]∥ (160)

≲ ϵ
|W+|
G0

max{G1, k2}min
{

1,
1
|W−|

}
∥f∥L∞(R). (161)

Since the Chebyshev polynomials are bounded in L∞(R) with norm 1, it follows from (159) that

∥p1∥L∞(R) ≲
|W+|
G0

min
{

1,
1
|W−|

}
∥f∥L∞(R), (162)

and from (161) that

∥δ1∥L∞(R) ≲ ϵ
|W+|
G0

max{G1, k2}min
{

1,
1
|W−|

}
∥f∥L∞(R), (163)

where p1 and δ1 are nth order bivariate Chebyshev expansions which agree with the values of [p1] and
(Dk

x + iG )[p1]− [f ] respectively at the collocation nodes. Moreover, we clearly have[
∂p1

∂x
+ i

∂g

∂x
p1

]
= [f + δ1] (164)

and
Pn

[
∂p1

∂x
+ i

∂g

∂x
p1

]
(x, y) = Pn[f + δ1](x, y). (165)

Since p1 and δ1 are nth bivariate Chebyshev expansions of the form (27), it follows that Pn[p1] = p1 and similarly
for δ1. A simple application of (30) and (32) yields∥∥∥∥Pn

[
∂p1

∂x
+ i

∂g

∂x
p1

]
−
(

∂p1

∂x
+ i

∂g

∂x
p1

)∥∥∥∥
L∞(R)

≲ ϵG1∥p1∥L∞(R) (166)

and
∥Pn[f + δ1]− (f + δ1)∥L∞(R) ≲ ϵ∥f∥L∞(R). (167)

Finally, it follows from (163), (165), (166) and (167), that∣∣∣∣∂p1

∂x
(x, y) + i

∂g

∂x
(x, y)p1(x, y)− f(x, y)

∣∣∣∣ ≲ ϵA1∥f∥L∞(R), (168)

where
A1 =

(
1 + G1

G0
+ 1

G0
max{G1, k2}

)
|W+|min

{
1,

1
W−

}
. (169)

Utilizing this, we will now analyze the error in the value of the integral computed via the Levin method. Let

I =
∫ 1

−1

∫ 1

−1
f(x, y) exp(ig(x, y))dxdy (170)

be the true value for the oscillatory integral, and consider the estimate I1 given by

I1 =
∫ 1

−1

∫ 1

−1

∂

∂x
(p1(x, y) exp(ig(x, y)))dxdy. (171)

We have

|I1 − I| =
∣∣∣∣∫ 1

−1

∫ 1

−1

(
∂p1

∂x
(x, y) + i

∂g

∂x
(x, y)p1(x, y)− f(x, y)

)
exp(ig(x, y))dxdy

∣∣∣∣ , (172)
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≲ ϵA1∥f∥L∞(R) (173)

which holds in the case in which G0 > 0. Note that |W+|min
{

1, 1
|W−|

}
is bounded independent by the magnitude

of ∂g
∂x , provided that ∂g

∂x does not vary rapidly in y. Moreover, G1/G0 remains small provided that ∂g
∂x does not vary

rapidly in x or y. These assumptions are, of course, reasonable when analyzing an adaptive scheme. Therefore,
(173) implies that when ∂g

∂x varies slowly over the domain of interest, the error on the integral estimate computed
via the Levin method is bounded independent of the magnitude of ∂g

∂x .
We now consider the case in which G1 is small; in particular, we suppose that G1 < 1

4 . Deploying Theorem 4, we
obtain the existence of a bandlimited function pb with bandlimit

[−cf (ϵ)−Nc∂g/∂x(ϵ), cf (ϵ) + Nc∂g/∂x(ϵ)]2, (174)

where
N =

⌊
log(ϵ)

log(2G1)

⌋
(175)

such that ∣∣∣∣∂pb

∂x
(x, y) + i

∂g

∂x
(x, y)pb(x, y)

∣∣∣∣ ≤ 2ϵ

(
2

1− 2G1

)
∥f∥L∞(R) (176)

and ∥∥∥∥∂pb

∂x

∥∥∥∥
L∞(R)

≤ 4
(

1 + G1

1− 2G1

)
∥f∥L∞(R). (177)

Since G1 < 1
4 , it follows that (174) is bounded and so the coefficient {aij} of the bivariate Chebyshev expansion are

bounded by a rapidly decaying function which is independent of G1. Proceeding just as above, we can choose n
independent of G1 such that∥∥∥∥ ∂

∂x
Pn[pb] + iPn

[
∂g

∂x

]
Pn[pb]−

(
∂pb

∂x
+ i

∂g

∂x
pb

)∥∥∥∥
L∞(R)

≲ ϵ

(
1 + 2G1

1− 2G1

)
∥f∥L∞(R) (178)

Defining [pb], [δ] and G as before, we see that

∥[δ]∥ ≲ ϵ

(
4G1

1− 2G1

)
∥f∥L∞(R) (179)

and
∥(Dk

x + G )[pb]∥ ≲ max{G1, k2} 2
1− 2G1

∥f∥L∞(R). (180)

Solving the system
(Dk

x + iG )[p1] = [f ] (181)

via a singular value decomposition truncated at precision on the order of ϵ∥Dk
x + iG ∥ yields a solution [p1] such that

∥[p1]∥ ≲ 2
1− 2G1

∥f∥L∞(R) (182)

and
∥(Dk

x + G )[pb]− [f ]∥ ≲ ϵ max{G1, k2} 2
1− 2G1

∥f∥L∞(R). (183)

Defining p1 and δ as before, we then obtain the bound∣∣∣∣∂p1

∂x
(x, y) + i

∂g

∂x
(x, y)p(x, y)− f(x, y)

∣∣∣∣ ≲ ϵA2∥f∥L∞(R), (184)

where
A2 = max{G1, k2} 2

1− 2G1
+ 1

1− 2G1
(185)
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which holds for all (x, y) ∈ [−1, 1]. Applying the same procedure as above, we can conclude that

|I1 − I| ≲ ϵA2∥f∥L∞([−1,1]2). (186)

Since we are considering the case there G1 is small, it follows that the constant term A2 is small as well. This result
holds when ∂g

∂x is uniformly small over the domain of interest,
independent on how rapidly it may vary.

4.1 Numerical acceleration via a rotated domain

To mitigate the effect of low frequency breakdown, it is advantageous to maximize the ∇g · p term in (88). In
Section (3), we deduced that the Levin equation admits well-behaved solutions regardless of the magnitude of ∇g,
even in the presence of stationary points. This scheme only works adaptively since we can continually subdivide the
domain until we are solving the equation on a region in which ∇g is approximately constant.
Throughout Section (3), we opted to solve the two dimensional Levin equation under a certain restriction of the
vector-field solution p, namely (90). We noted that we could more generally restrict ourself to solutions of the form

p(x, y) = v(x, y)p(x, y) (187)

for any sufficiently well-behaved vector field v(x, y). In order to maximize ∇g · p, it is natural to choose
v(x, y) = ∇g(x, y). This results in the reduced Levin equation(

∇g(x, y) ·D +
(
∆g + i∥∇g(x, y)∥2)) p(x, y) = f(x, y) (188)

where D =
(

∂
∂x

∂
∂y

)
. Since ∇g is approximately constant, ∆g ≈ 0. This reduces the equation to the same form as

(91) while also maximizing the ∇g · p term of (88). Introducing a change of coordinates(
x′

y′

)
=
(

∂g
∂x

∂g
∂y

−∂g
∂y

∂g
∂x

)(
x
y

)
, (189)

it follows that
∇(x′,y′)g(x′, y′) =

(
1
0

)
(190)

for all (x′, y′). Then (188) becomes
∂

∂x′ p(x′, y′) + ip(x′, y′) = f(x′, y′), (191)

analogous to (92) in the case where ω1 = 1. Applying Lemma 5 yields a solution p subject to relatively tight and
clean bounds. Moreover, since G1 > 0, the coefficient A1, given by (169), is minimized, resulting in minimal error
in the integral estimate (173).

5 Algorithm Description

In this section, we describe a resonance-free two-dimensional adaptive Levin method for the numerical evaluation of
integrals of the form (5). We begin in Section (5.1) by reviewing the algorithm used to compute the
one-dimensional integral (1) introduced in [3], which is a component of the scheme of this paper. We then describe
the algorithm of this paper that approximates (5) in Section (5.2). Finally, we close with Section 5.3 which gives a
brief review of the adaptive Gauss-Legendre algorithm used to numerically compute reference values in the
experiments of this paper.
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5.1 The Adaptive Levin Method in 1D

In this subsection, we describe the adaptive Levin method in one-dimension, introduced in [3], for the numerical
calculation of integrals of the form ∫ b

a

f(x)eig(x)dx. (192)

The algorithm operates by adaptively applying a base routine which computes an estimate of∫ b0

a0

f(x)eig(x)dx (193)

for some subinterval [a0, b0] ⊂ [a, b]. The adaptive base routine takes as input the interval [a0, b0], an integer k
(controlling the number of Chebyshev nodes used to discretize the one-dimensional Levin equation), the k extremal
Chebyshev nodes {tcheb

i,k }k
i=1 on the interval [a0, b0], and the vectors of values [f ] and [g] providing the values of the

functions f and g on the Chebyshev nodes.
The base algorithm proceeds as follows:

1. Estimate the vector of values [g′] by applying the one-dimensional spectral differentiation matrix Dk to the
vector of values [g]. That is, 

g′
(

tcheb
1,k

)
...

g′
(

tcheb
k,k

)
 = Dk


g
(

tcheb
1,k

)
...

g
(

tcheb
k,k

)
 . (194)

2. Form the k × k matrix

A = Dk + i


g′
(

tcheb
1,k

)
. . .

g′
(

tcheb
k,k

)
 (195)

so that A [p] = [f ], which discretizes (2).

3. Construct a singular value decomposition

A =

 | |
u1 · · · uk

| |




σ1
σ2

. . .
σk


 | |

v1 · · · vk

| |

T

(196)

of the matrix A .

4. Find the least integer 1 ≤ l ≤ k such that σl ≤ ϵ0∥A ∥, where ϵ0 is machine zero. If no such integer exists,
then return the estimate 0 for (193).

5. Approximate the vector of values [p] of the solution p to (2) via

[p] =

 | |
v1 · · · vl

| |




1
σ1 1

σ2
. . .

1
σl


 | |

u1 · · · ul

| |

T

[f ]. (197)

Then the entries of the vector [p] of (197) approximate the values of a function p such that

d

dx
(p(x) exp(ig(x))) = f(x) exp(ig(x)) (198)

at the Chebyshev extremal nodes on the interval [a0, b0].
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6. Return the estimate
p
(
tcheb
k,k

)
exp

(
ig
(
tcheb
k,k

))
− p

(
tcheb
1,k

)
exp

(
ig
(
tcheb
1,k

))
(199)

for the approximate value of (193).

The adaptive algorithm takes as input the interval [a, b], a tolerance parameter ϵ > 0, an integer k (controlling the
number of Chebyshev nodes used to discretize the one-dimensional Levin equation), and the vectors [f ] and [g] of
values of f and g at the Chebyshev nodes on [a, b].
The algorithm maintains an estimate I for (192), as well as a stack of subintervals. Initially, this interval stack
contains only the entire interval [a, b] and the initial estimate I is set to 0. The following steps are repeated as long
as the stack is non-empty:

1. Remove a subrectangle [a0, b0] from the stack of subintervals.

2. Compute an estimate

I0 =
∫ b0

a0

f(x) exp(ig(x))dx (200)

over the entire subrectangle using the base routine described above.

3. Calculate estimates

I1 =
∫ c0

a0

f(x) exp(ig(x))dx and I2 =
∫ b0

c0

f(x) exp(ig(x))dx (201)

where c0 = a0+b0
2 using the base routine described above.

4. If |I0 − (I1 + I2)| < ϵ, then update the current estimate I ← I + I0. Otherwise, add [a0, c0] and [c0, b0] to the
stack of rectangles.

In the end, the algorithm returns an estimate I for (5).

5.2 The Adaptive Levin Method in 2D

In this section, we provide a description of the algorithm of this paper – a resonance-free adaptive Levin method in
two dimensions for the numerical calculation of integrals of the form∫

R

f(x, y) exp(ig(x, y))dxdy. (202)

Note that the algorithm can be trivially modified to handle integrals of the form

∫
R

f(x, y) sin(g(x, y))dxdy or
∫

R

f(x, y) cos(g(x, y))dxdy. (203)

The algorithm operates by adaptively applying a base routine which computes an estimate of∫
R0

f(x, y)eig(x,y)dxdy (204)

over some subrectangle R0 ⊂ R. The base routine operates by solving either

∂p

∂x
(x, y) + i

∂g

∂x
(x, y)p(x, y) = f(x, y) (205)

or
∂p

∂y
(x, y) + i

∂g

∂y
(x, y)p(x, y) = f(x, y). (206)
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In solving one of these equations, the boundary integral (9) reduces to∫
R0

f(x, y)eig(x,y)dxdy =
∫ d

c

p(b, y) exp(ig(b, y))dy −
∫ d

c

p(a, y) exp(ig(a, y))dy (207)

or ∫
R0

f(x, y)eig(x,y)dxdy =
∫ b

a

p(x, d) exp(ig(x, d))dx−
∫ b

a

p(x, c) exp(ig(x, c))dx (208)

respectively. We define the constants

M1 = min abs
[

∂g

∂x

]
and M2 = min abs

[
∂g

∂y

]
(209)

and solve (205) in the case where M1 > M2 and we solve (206) otherwise. Here we describe the base algorithm in
the first case, and the description the second case is entirely analogous. In this case, the boundary integral (9)
reduces to
The base routine takes as input the subrectangle R0, an integer kcheb controlling the number of Chebyshev nodes
used to construct the tensor product quadrature, an integer nbase specifying the maximum order of the polynomials
used to represent the solution p, an integer mlevin specifying the number of interpolation points along each section
of ∂R0, as well as the vectors of values [f ], [g],

[
∂g
∂x

]
and

[
∂g
∂y

]
. The base routine proceeds as follows;

1. Construct the k2 × k2 matrix
A = Dk

x + i
(

diag
[

∂g
∂x

])
(210)

which discretizes (1).

2. Construct a singular value decomposition

A =

 | |
u1 · · · uk2

| |




σ1
σ2

. . .
σk2


 | |

v1 · · · vk2

| |

T

(211)

of the matrix A .

3. Find the least integer 1 ≤ l ≤ k2 such that σℓ ≥ ∥A ∥F ϵ0 where ϵ0 is machine zero. If no such integer exists,
return the estimate 0 for (204).

4. Approximate the vector values [p] of the solution p to (??) via

[p] =

 | |
v1 · · · vl

| |




1
σ1 1

σ2
. . .

1
σl


 | |

u1 · · · ul

| |

T

[f ]. (212)

5. Using the vector of values [p], interpolate to an m−point grid of Chebyshev nodes on the relevant sections of
∂R0, and similarly for [g]. That is, obtain the vectors

p(a0, ycheb
1,m )

p(a0, ycheb
2,m )

...
p(a0, ycheb

m,m)

 ,


p(b0, ycheb

1,m )
p(b0, ycheb

2,m )
...

p(b0, ycheb
m,m)

 ,


g(a0, ycheb

1,m )
g(a0, ycheb

2,m )
...

g(a0, ycheb
m,m)

 and


g(b0, ycheb

1,m )
g(b0, ycheb

2,m )
...

g(b0, ycheb
m,m)

 , (213)

where {ycheb
i,m }m

i=1 is the m−point grid of Chebyshev nodes over the interval [a0, b0].

6. Use the provided external subroutine to evaluate the function g on the the two m−point grids of Chebyshev
nodes {(a0, ycheb

i,m )}m
i=1, and {(b0, ycheb

i,m , c0)}m
i=1.
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7. Return the estimate (9) by applying the one-dimensional adaptive Levin algorithm as described in Section
(5.1) to the one-dimensonal integrals of (207)

The algorithm proper takes a tolerance parameter ϵ > 0, the domain endpoints a < b and c < d, an integer k
specifying the number of discretization nodes, an integer n specifying the order of the polynomial expansion
representation, and an external subroutine which returns the values of the functions f , g and (optionally) ∂g

∂x and
∂g
∂y .

The algorithm maintains an estimate I for (5), as well as a stack of subrectangles. Initially, the stack only contains
the full rectangle R and the initial estimate I is set to 0. The following steps are repeated as long as the stack is
non-empty:

1. Remove a subrectangle R0 = [a0, b0]× [c0, d0] from the stack of domains.

2. Use the external subroutine supplied to evaluate the functions f , g, ∂g
∂x and ∂g

∂x at the Chebyshev tensor
product quadrature {(xcheb

i , ycheb
j )}k

i,j=1 over R0. If the values of the partial derivatives ∂g
∂x and ∂g

∂y are not
provided, estimate their values at the quadrature nodes via spectral partial differentiation:[

∂g

∂x

]
= Dk

x [g] and
[

∂g

∂y

]
= Dk

y [g]. (214)

3. Compute an estimate
I0 =

∫
R0

f(x, y) exp(ig(x, y))dxdy (215)

over the entire subrectangle using the subalgorithm described above.

4. Calculate estimates
Ii =

∫
Ri

f(x, y) exp(iω · g(x, y))dxdy (For i = 1, 2, 3, 4)

where

R1 =
[
a0,

a0 + b0

2

]
×
[
c0,

c0 + d0

2

]
, R2 =

[
a0 + b0

2 , b0

]
×
[
c0,

c0 + d0

2

]
, (216)

R3 =
[
a0,

a0 + b0

2

]
×
[

c0 + d0

2 , d0

]
, R4 =

[
a0 + b0

2 , b0

]
×
[

c0 + d0

2 , d0

]
(217)

using the subalgorithm described above.

5. If
∣∣∣I0 −

∑4
i=1 Ii

∣∣∣ < ϵ, then update the current estimate I ← I + I0. Otherwise, add {Ri}4
i=1 to the stack of

rectangles.

In the end, the algorithm returns the an estimate I for (5).

5.3 Adaptive Gauss-Legendre integration in 2D

In this section, we provide a brief description of the Gauss-Legendre adaptive integration scheme in two
dimensions. In particular, we utilize this algorithm to compute accurate estimates of∫

R

f(x, y)dxdy (218)

for some function f : R2 → R and some rectangle R ⊂ R2. This algorithm was utilized in many of our experiments,
and the values it returned were considered the ground truth.
Begin by constructing Legendre quadratures x1, . . . , xn and y1, . . . , yn on the intervals [a, b] and [c, d] respectively,
along with associated Gauss-Legendre weights w1

1, . . . , w1
n and w2

1, . . . , w2
n. Taking a tensor product of the two sets

of nodes yields a quadrature on the entire rectangle R, while taking pairwise products of the weights yields a set of



Aubry, Serkh, Bremer Page 25

weights for the rectangle R. Explicitly, we obtain

{xi, yj}n
i,j=1 w̃ij = w1

i w2
j (219)

The integral approximation of the function f(x, y) over R is then given by∫
R

f(x, y)dxdy =
n∑

i,j=1
w̃ijf(xi, yj) (220)

The adaptive scheme takes as input an integer n denoting the order of the approximation, the values a, b, c, d
denoting the bounds of integration, a tolerance parameter ϵ > 0, and an external subroutine for evaluating the
function f(x, y) on the quadrature nodes. The algorithm maintains an approximation I which is initially set to 0,
as well as a stack of subrectangles which initially contains the entire rectangle R. The following steps are repeated
as long as the stack of rectangles is non-empty.

1. Remove a rectangle R0 from the stack of rectangles.

2. Compute an estimate
I0 =

∫
R0

f(x, y)dxdy (221)

over the entire subrectangle using the approximation (220) described above.

3. Compute estimates
Ii =

∫
Ri

f(x, y)dxdy (For i = 1, 2, 3, 4.)

for the subrectangles Ri given by (217) used in the adaptive Levin algorithm.

4. If ∥I0 −
∑4

i=1 Ii∥ < ϵ, then update the current estimate I ← I + I0. Otherwise, add {Ri}4
i=1 to the stack of

rectangles.

When the algorithm terminates, an estimate I for (218).

6 Numerical Experiments

In this section, we provide the results of numerical experiments which were conducted to present the properties,
behaviour, and performance of the two-dimensional adaptive Levin method in a variety of cases. The code for these
experiments was written in Fortran, and compiled with version (blah).
We took k = 7, resulting in a 49 point tensor product quadrature on the unit rectangle built from a 7 point
Clenshaw-Curtis quadrature. Moreover, we utilized nbase = 9th order bivariate Chebyshev expansions of the form
Equation (27), resulting in 55 basis functions. Finally, we use a 7 point Curtis-Clenshaw rule when applying the
one dimensional Levin method on each portion of the domain’s boundary ∂R when applying the one dimensional
Levin method. The tolerance parameter for the adaptive Levin method was set to 10−12.

6.1 Integrals involving elementary functions with explicit solutions.

In this experiment, we evaluated the following integrals using the adaptive Levin scheme:

I1(ω) =
∫ 1

0

∫ 100

−100
exp (iω(x + y)) dxdy, (222)

I2(ω) =
∫

[−1,1]2
sin(x− y) exp (iω(10x− 4y)) dxdy and (223)

I3(ω) =
∫

[−1,1]2
ex cos(y) exp (iω(9y − 2x)) dxdy. (224)
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These integrals have the following closed-form representations

I1(ω) = (e100iω − e−100iω)(eiω − 1)
−ω2 , (225)

I2(ω) = 2i sin(2ω − 1) sin(10ω − 1)
(4ω − 1)(10ω − 1) − 2i sin(2ω + 1) sin(10ω + 1)

(4ω + 1)(10ω + 1) and (226)

I3(ω) =
(

4ω

A
− 2i

A

)
sin(2ω + i) (B sin(C) + C sin(B)) , (227)

where A = BC(4ω2 + 1), B = 9ω + 1 and C = 9ω − 1.
In this experiment, we sampled l = 200 equispaced points x1, . . . , xl in the interval [5, 20]. For each
ω = 2x1 , . . . , 2xl , we evaluated I1, I2 and I3 using the adaptive Levin scheme . The time taken by the adaptive
Levin scheme was measured and the absolute error on the solution was recorded. Figure 1 gives the results.
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Figure 1: The results for the experiment in Section (6.1). The first row plots the results for integral I1 over the
rectangle [0, 1] × [−100, 100] in the case where ω = 2xi . The second and third rows plot the results for integrals I2
and I3 respectively in the case where ω = 2i. The plots in the first column display the computation time, which
is notably independent of the frequency ω. The plots in the second column display the absolute error between the
value computed by the two-dimensional adaptive Levin scheme and the true value provided by Equation (224).
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6.2 Integrals with explicit solutions involving stationary points.

In this experiment, we evaluate

I4(ω) =
∫

[−1,1]2
exp(x + y) exp

(
iω(x2 − y2)

)
dxdy (228)

using the adaptive Levin scheme. This has a closed-form solution given by

I4(ω) = π

4ω

[
Erf((−1)1/4A) + Erfi((−1)1/4B)

] [
Erf((−1)3/4A) + Erfi((−1)3/4B)

]
(229)

(230)

where

A = 1
2
√

ω
+ i
√

ω B =
√

ω + i

2
√

ω
. (231)

The notation Erfi refers to the complex error function. This experiment was undertaken in order to understand the
behaviour of the Levin method in the presence of stationary points. In this case, ∇g has stationary points along
the lines x = 0 and y = 0.
We sampled l = 200 linearly-spaced points x1, . . . , xl in the interval [5, 20], and we evaluated I4(ω) for each
ω = 2xl , . . . , 2xl using the adaptive Levin method. The computation times and absolute errors against the true
solution are plotted in Figure 2 as a function of ω.
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Figure 2: The results for the experiment in Section 6.2. The left and right plots provide the computation time
and absolute error for integral I4 and I5 over the rectangle [−1, 1]2 in the case where ω = (2xi , 2xi) and ω = 2xi

respectively.

6.3 An integral involving resonance points

In this experiment, we consider the integral

I5(ω) =
∫

[0,1]2
exp(iω(1 + x)(1 + y2))dxdy. (232)

In this case,
∇g =

(
1 + y2

2y(1 + x)

)
, (233)
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and so the integrand has a line of resonance points along y = 0. We sampled l = 20 linearly-spaced points x1, . . . , xl

on the interval [5, 20], and evaluated I5(ω) for each ω = 2x1 , . . . , 2xl using the adaptive Levin method. The
computation times and relative errors, measured by comparison with the Gauss-Legendre adaptive scheme, are
plotted in Figure 3 as a function of ω.
The relative errors are only computed up to ω = 211 due to the time complexity in the case of the Gauss-Legendre
method in the high frequency regime.
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Figure 3: The results for the experiment in Section 6.2. The left and right plots provide the computation time and
relative error for integral I4 and I5 over the rectangle [−1, 1]2 in the case where ω = 2xi . The relative error is obtain
by direct comparison against the Gauss-Legendre adaptive integration scheme.

6.4 Integrals involving Bessel functions

In this experiment, we used the adaptive Levin method to evaluate the integral

I6(ω, ϵ) =
∫

[0,1]2\[0,ϵ]2
ex+yH0(ωr)dxdy, (234)

where
r =

√
x2 + y2. (235)

Here, Hν denotes the Hankel function of the first kind

Hν(x) = Jν(x) + iYν(x), (236)

where Jν and Yν are Bessel functions of the first and second kind, respectively. They are solutions of Bessel’s
differential equation

x2 d2y

dy2 (x) + x
dy

dx
(x) + (x2 − ν2)y(x) = 0. (237)

The Bessel functions of the second kind are singular at the origin, making I6 improper, which is why we delete a
small neighbourhood of the origin from the domain of I6.
In this experiment, we sampled l = 20 equispaced points x1, x2, . . . , xl on the interval [5, 20]. Then, for each
ω = 2x1 , . . . , 2xl , we constructed a phase function representation for both the first and second kinds of Bessel
functions using the algorithm of [2]. In particular, the phase αbes

ν functions give us the representations

Jν(x) =
√

π

2x

sin
(
αbes

ν

)√
d

dx αbes
ν (x)

and Yν(x) =
√

π

2x

cos
(
αbes

ν

)√
d

dx αbes
ν (x)

, (238)
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so that

Hν(x) = i

√
π

2x

e−iαbes
ν (x)√

αbes
ν (x)

. (239)

Using this representation, coupled with the adaptive Levin method, we evaluate I6. Explicitly, we took the
following functions as input to the adaptive Levin scheme;

f(x, y) = i

√
π

2
√

x2 + y2

ex+y√
αbes

0

(
ω
√

x2 + y2
) and (240)

g(x, y) = −αbes
0 (ω

√
x2 + y2) (241)

The results of this experiment are plotted in Figure 4. Of course, the increased computation times for the
calculation of I6 in comparison to the other experiments can be attributed to the time taken to compute the vector
of values [αbes

ν ] at each iteration. Moreover, it is not surprising that as ϵ decreases in magnitude, a larger number of
subdivisions are required in a neighbourhood of the singular. This is visually illustrated in the graph appearing on
the right hand side of Figure 5, where we plot the subdivision pattern when we computed I6(210, ϵ = 0.1).
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Figure 4: The results for the experiment in Section 6.4. The left and right plots provide the computation time and
absolute error respectively a function of ω for integral I6 over the rectangle [0, 1]2 \ [0, ϵ]2 in the case where ω = 2xi .

6.5 Experiment 5 - Behaviour in presence of high order stationary points

In this experiment, we used the adaptive Levin method to evaluate

I7(ω, n, m) =
∫

[−1,1]2

cos(xy)
1 + x2 + y2 exp (iω (xn + ym)) dxdy, (242)

where n and m are positive integers. The goal of this experiment is to test the time-complexity of the algorithm as
the order of the stationary points increases. The results of this experiment are shown in Figure 6. The first plots
displays the computation time as a function of ω for each pair (n, m) while the second displays the relative error as
a function of ω against the results for the adaptive Gauss-Legendre method. We consider the pairs

(n, m) = (2, 2), (3, 4), (4, 4) and (7, 4). (243)

Analogous to the results observed in [3], the relative error on the computed integral remains consistent for various
pairs (n, m), while the time complexity increases moderately with increasing n + m.
Displayed in Figure 7 are visualizations of the adaptive subdivision which occured when the adaptive Levin method
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Figure 5: Plots visualizing the adaptive subdivision underwent by the two-dimensional adaptive Levin method.
For a given subrectangle, the box boundary is colored blue if (205) was solved, and is colored red if (206) was
solved. (Left) The subdivision when computing I4(ω = 210, ϵ = 0.1). (Right) The subdivision when computing
I5(ω = 210, ϵ = 0.01).

was applied over the rectangular domain when computing I6(212, 2, 2) and I6(212, 2, 10).
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Figure 6: The results for the experiment in Section 6.5 where we analyze the behaviour of the adaptive Levin method
in the presence of high-order stationary points. The left and right plots provide the computation time and absolute
error respectively as a function of |ω| for integral I7(n, m). We consider various values of n and m over the rectangle
[−1, 1]2 and the case where ω = (2xi , 2xi).

6.6 Experiment 6 - Behaviour in presence of many stationary points

In this experiment, we used the adaptive Levin method to evaluate

I8(ω, n, m) =
∫

[−1,1]2

1
1 + x2 + y2 exp

(
iω
(

sin2
(nπ

2 x
)

+ sin2
(mπ

2 y
)))

dxdy (244)

I9(ω, n, m) =
∫

[−1,1]2

1
1 + x2 + y2 exp

(
iω
(

sin2
(nπ

2 x
)

+ cos2
(mπ

2 y
)))

dxdy (245)
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Figure 7: Plots visualizing the adaptive subdivision which occured when the two-dimensional adaptive Levin method
was applied. For a given subrectangle, the box boundary is colored blue if (205) was solved, and is colored red if
(206) was solved. (Left) The subdivision when computing I6(ω = 25, n = 2, m = 2). (Right) The subdivision when
computing I7(ω = 25, n = 2, m = 10).

each of which have nm stationary points, where n and m are positive integers. The goal of this experiment is to
test the behaviour of the adaptive Levin method in the presence of many stationary points scattered across the
domain of integration. In this experiment, we sampled l = 30 points x1, . . . , xl in the interval [5, 20]. Then, for each
ω = (2x1 , 2x1), . . . , (2x1 , 2x1), we evaluate I8 for various values of (n, m). We consider the pairs

(n, m) = (2, 2), (3, 4), (4, 4) and (7, 4). (246)

Figure 8 gives the results. Of course, it is not surprising to see that the time of computation increases uniformly as
the number of stationary points increases. Additionally, Figure 9 provides a visualization of the adaptive
subdivision underwent when computing I8(25, 3, 4) and I9(25, 4, 4).

7 Conclusion
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Figure 8: The results for the experiment in Section 6.6 where we analyze the behaviour of the adaptive Levin method
in the presence of many stationary points. The left and right columns provide the computation time and absolute
error respectively as a function of ω. The first row displays the results for I8(ω, n, m) while the second column
displays those of I9(ω, n, m). We consider various values of n and m over the rectangle [−1, 1]2 and the case where
ω = (2xi , 2xi).
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