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Numerical Integration

Why would we integrate?
• Geometric computations


• Centre of mass

• Moment of Inertia

• Symmetries

• Structural Integrity

• Tension forces


• Trajectories of objects in motion

• Acceleration  velocity  position

• Rotational trajectory


• Electromagnetic computations

• Earth’s magnetic field

• Electric field within closed system


• Financial Engineering

• Pricing financial derivatives

• Profit computations

→ →

Why would we numerically integrate?
• No Antiderivative


• E.x. 

• Only sampled points

• Easier than finding antiderivative

• Irregular or scattered data

• High dimensional integrals

• Complex domains

• Numerical verification

f(x) = exp(−x2)



Numerical Integration

• Midpoint Method

Consider  for  and .cos(nx) x ∈ [−1,1] n ∈ ℕ

• Gauss-Legendre Integration

Construct Gauss-Legendre quadrature {xi, wi}n
i=1

∫
b

a
f(x)dx =

n

∑
i=1

wi f(xi)

 equally spaced points on .n2 [−1,1]



One-Dimensional Levin Method



Goal: Numerically evaluate integrals of the following form;

I = ∫
b

a
f(x) exp(ig(x))dx

ℜe(I) = ∫
b

a
f(x) cos(g(x))dx

 and f, g : ℝ → ℝ a < b ∈ ℝ

Method: Find an antiderivative of the integrand in Eq.(1).

(1)

ℑm(I) = ∫
b

a
f(x) sin(g(x))dx



Search for a function  such thatp : ℝ → ℝ

f(x) exp(ig(x)) =
d
dx (p(x) exp(ig(x)))

Plugging this into , we obtainI

I = ∫
b

a

d
dx (p(x) exp(ig(x))) dx = p(b) exp(ig(b)) − p(a) exp(ig(a))

I = ∫
b

a
f(x) exp(ig(x))dx (1)

Goal: Numerically evaluate integrals of the following form;

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following;



= (p′￼(x) + p(x) ⋅ ig′￼(x)) exp(ig(x))

⟹ f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)

I = ∫
b

a
f(x) exp(ig(x))dx (1)

Search for a function  such thatp : ℝ → ℝ

f(x) exp(ig(x)) =
d
dx (p(x) exp(ig(x)))

Goal: Numerically evaluate integrals of the following form;

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following;



We define the -point Chebyshev extremal grid on the interval  ask [−1,1]

xj,k = cos (π
k − j
k − 1 )−1 = x1,k < x2,k < ⋯ < xk,k = 1

−1 +1

L(x) =
b − a

2
x +

b + a
2

Obtain grid on interval  via the map[a, b]

Method of Discretization: Chebyshev Interpolation

0

L : [−1,1] → [a, b]

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following; First: Find  s.tp(x)

f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)



Tn(cos θ) = cos(nθ)T0(x) = 1 Tn+1(x) = 2xTn(x) − Tn−1(x)
T1(x) = x

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following; First: Find  s.tp(x)

f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)

Chebyshev polynomials are defined recursively;

n−1

∑
k=0

Ti(xk,n)Tj(xk,n) =
0 i ≠ j
n i = j = 0
n/2 i = j ≠ 0

They also satisfy the following orthogonality relation:

Method of Discretization: Chebyshev Interpolation

f(x) =
n−1

∑
i=0

aiTi(x)



f(x) =
n−1

∑
i=0

aiTi(x)

Exploiting the orthogonality relation, the coefficients  of the expansion are 
determined.

{ai}

⟺ f(xj,k) =
n−1

∑
i=0

aiTi(xj,k) ∀j, k

Moral: Given the values of a function at the Chebyshev nodes, we can interpolate the 
function everywhere.

We can express a function  as a linear combination of these Chebyshev 
Polynomials, and evaluate such at the grid points .

f
{xj,k}

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following; First: Find  s.tp(x)

f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)

Method of Discretization: Chebyshev Interpolation



𝒟k

f(x1,k)
⋮

f(xk,k)
=

f′￼(x1,k)
⋮

f′￼(xk,k)

Let  denote the -vector of evaluations at the  Chebyshev nodes: [ f ] k k [ f ] =
f(x1,k)

⋮
f(xk,k)

Denote  the  spectral differentiation matrix which sends . That is,𝒟k k × k [ f ] 𝒟k [ f′￼]

 simply evaluates    at the Chebyshev nodes.𝒟k f′￼(x) =
n−1

∑
i=0

aiTi′￼(x)

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following; First: Find  s.tp(x)

f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)

Method of Discretization: Chebyshev Interpolation



Now consider the following matrix  given by;𝒜

𝒜 = 𝒟k + i
g′￼(x1,k) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ g′￼(xk,k)

Then, applying  to , we find,𝒜 [p]

𝒜[p] = 𝒟k

p(x1,k)
⋮

p(xk,k)
+ i

g′￼(x1,k) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ g′￼(xk,k)

p(x1,k)
⋮

p(xk,k)
=

p′￼(x1,k) + ig′￼(x1,k)p(x1,k)
⋮

p′￼(xk,k) + ig′￼(xk,k)p(xk,k)
= [ f ]

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following; First: Find  s.tp(x)

f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)

Notation: 

[ f ] =
f(x1,k)

⋮
f(xk,k)

Method of Discretization: Chebyshev Interpolation



Numerically inverting  via QR or SVD, we obtain:𝒜

Given the subinterval  and associated nodes , the following 
approximation is made;

[a0, b0] ⊂ [a, b] {xj,k}

∫
b0

a0

f(x) exp(ig(x))dx ≈ p(xk,k) exp(i(g(xk,k)) − p(x1,k) exp(ig(x1,k))

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following; First: Find  s.tp(x)

f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)

Notation: 

[ f ] =
f(x1,k)

⋮
f(xk,k)

Method of Discretization: Chebyshev Interpolation

𝒜[p] = [ f ]

[p] = 𝒜−1[ f ]



c1

c2

a b

a b

a c1

I[a,b]

I[a,c1] + I[c1,b]

Suppose | I[a,b] − I[a,c1] − Ic1,b] | ≥ ϵ

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following; First: Find  s.tp(x)

f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)

Notation: 

[ f ] =
f(x1,k)

⋮
f(xk,k)

Estimate on :[a0, b0] ⊂ [a, b]

Ia0b0
= p(xk,k)exp(i(g(xk,k)) − p(x1,k)exp(ig(x1,k))

I[a,c2] + I[c2,c1]

I[a,c2] + I[c2,c1]

c3

Suppose | I[a,c1] − I[a,c2] − Ic2,c1] | < ϵ

I = I + I[a,c1]

Suppose | I[c1,b] − I[c1,c3] − Ic3,b] | ≥ ϵ

b

Implementing the Adaptive Algorithm

Set , choose .I = 0 ϵ > 0



Numerical Experiments

I1(x) = ∫
1

0
exp(iλx2)exp(−x)xdx

I = ∫
b

a
f(x) exp(ig(x))dx

Goal: Evaluate the following; First: Find  s.tp(x)

f(x) = p′￼(x) + p(x) ⋅ ig′￼(x)

Notation: 

[ f ] =
f(x1,k)

⋮
f(xk,k)

Estimate on :[a0, b0] ⊂ [a, b]

Ia0b0
= p(xk,k)exp(i(g(xk,k)) − p(x1,k)exp(ig(x1,k))

I2(x) = ∫
1

0
exp(iλx4)

1
0.01 + x4

dx

f(x) = exp(−x)x

g(x) = λx2

f(x) =
1

0.01 + x4

g(x) = λx4

I1

I2

Source: [1]



Two-Dimensional Levin Method



I = ∬R
f(x, y)exp(i ⃗ω ⋅ ⃗g (x, y))dxdy

1. ⃗g : ℝ2 → ℝ2,
2. f : ℝ2 → ℝ,
3. ⃗ω ∈ ℝ2,
4. R = [a, b] × [c, d] ⊂ ℝ2

ℜe{I} = ∬R
f(x, y)cos( ⃗ω ⋅ ⃗g (x, y))dxdy

ℑm{I} = ∬R
f(x, y)sin( ⃗ω ⋅ ⃗g (x, y))dxdy

Method: Find an antiderivative of the integrand in Eq.(1).

(1)

Goal: Generalize to Two Dimensions



I = ∬R
f(x, y)exp(i ⃗ω ⋅ ⃗g (x, y))dxdy (1)

Search for a function  such that⃗p : ℝ2 → ℝ2

Plugging this into  and applying the divergence theorem yieldsI

I = ∬R
∇ ⋅ ( ⃗p (x, y) exp(i ⃗ω ⋅ ⃗g (x, y))dxdy = ∫∂R

⃗p (x, y) exp(i ⃗ω ⋅ ⃗g (x, y))dxdy

f(x, y) exp(i ⃗ω ⋅ ⃗g (x, y)) = ∇ ⋅ ( ⃗p (x, y) exp(i ⃗ω ⋅ ⃗g (x, y)))

Goal: Generalize to Two Dimensions



I = ∬R
f(x, y)exp(i ⃗ω ⋅ ⃗g (x, y))dxdy (1)

Search for a function  such that⃗p : ℝ2 → ℝ2

f(x, y) exp(i ⃗ω ⋅ ⃗g (x, y)) = ∇ ⋅ ( ⃗p (x, y) exp(i ⃗ω ⋅ ⃗g (x, y)))
= (∇ ⋅ ⃗p (x, y) + iωtD ⃗g (x, y) ⃗p (x, y)) exp(i ⃗ω ⋅ ⃗g (x, y))

⟹ f(x, y) = ∇ ⋅ ⃗p (x, y) + iωtD ⃗g (x, y) ⃗p (x, y)

Goal: Generalize to Two Dimensions



Method of Discretization: Two Dimensional Chebyshev Interpolation

f(x, y) =
n−1

∑
i,j=0

aijTi(x)Tj(y)

[ f ] =

f(x1,n, y1,n)
f(x2,n, y1,n)

⋮
f(xn,n, y1,n)
f(x1,n, y2,n)

⋮
f(xn,n, y2,n)

⋮
f(xn,n, yn,n)

2-dim Chebyshev grid containing  
points. We define  as;

n2

[ f ]

Approximate a function  as,f

(b, d)

(b, c)

(a, d)

(a, c)



Consider the special differentiation matrix  from the 1-dimensional discretization.𝒟

I ⊗ 𝒟[ f ] = [ ∂f
∂x ] 𝒟 ⊗ I[ f ] = [ ∂f

∂y ] A ⊗ B =

a11B a12B ⋯ a1mB
a21B a22B ⋯ a2mB

⋮ ⋮ ⋱ ⋮
an1B an2B ⋯ anmB

The matrix  is defined as𝒜

𝒜 = (I ⊗ 𝒟 𝒟 ⊗ I) + (diag(ω1) diag(ω2)
diag [ ∂g1

∂x1 ] diag [ ∂g1

∂x2 ]
diag [ ∂g2

∂x1 ] diag [ ∂g2

∂x2 ]
𝒜 ([p1]

[p2]) = [ f ]

Method of Discretization: Two Dimensional Chebyshev Interpolation



Method of Discretization: Two Dimensional Chebyshev Interpolation

𝒜 ([p1]
[p2]) = [ f ] ([p1]

[p2]) = 𝒜−1[ f ]

We obtain the values of  and  at the 2-dimensional Chebyshev quadrature, again 
numerically inverting  via QR or SVD.

p1 p2
𝒜

Given a sub-rectangle  and associated nodes , we haveR0 ⊂ R {xi,k, yj,k}

∬R0

f(x, y)exp(i ⃗ω ⋅ ⃗g (x, y))dxdy = ∫∂R0

⃗p (x, y)exp(i ⃗ω ⋅ ⃗g (x, y))dxdy

 is the union of four lines, the integral over each of which is approximated via 1d method.∂R0



(b, d)

(b, c)

(a, d)

(a, c)

(b, d)

(b, c)

(a, d)

(a, c)

(xx, d)

(a, yy)

(xx, c)

(b, yy)

Implementing the Adaptive Algorithm

I1 = Ia1
+ Ib1

+ Ic1
+ Id1

Ia1

Ib1

Ic1

Id1

• Sample the functions  at the Chebyshev extremal grid.

• Construct the matrix  and use it to find the values of  on 

the extremal grid.

• Interpolate values of  on 1d extremal grids on .

• Apply 1d Levin method to components of .

• Record integral value 

f, g
𝒜 ⃗p

⃗p ∂R
∂R

I1

I2,1

I2,2 I2,3

I2,4

I2 = I2,1 + I2,2 + I2,3 + I2,4

| I1 − I2 | ≥ ϵ

I3,1 I3,4

I3,2 I3,3

| I2,1 − I3 | ≥ ϵ
I3 = I3,1 + I3,2 + I3,3 + I3,4



Closing Remarks

I am currently working on speeding up the algorithm

Cases where  reaches a singularity, computation time is lengthDg

Dg(x′￼, y′￼) = (λ 0
0 0)

ω

Time (s)
≈ log(ω)

ω

Time (s)
≈ log2(ω)

Dg(x′￼, y′￼) = (0 0
0 0)
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