The Adaptive Levin Method By Murdock Aubry

Supervised by Prof. James Bremer CUMC June 2023

Numerical Integration

Why would we integrate?

- Geometric computations
	- Centre of mass
	- Moment of Inertia
	- Symmetries
	- Structural Integrity
	- Tension forces
- Trajectories of objects in motion
	- Acceleration \rightarrow velocity \rightarrow position
	- Rotational trajectory
- Electromagnetic computations
	- Earth's magnetic field
	- Electric field within closed system
- Financial Engineering
	- Pricing financial derivatives
	- Profit computations

Why would we *numerically* integrate?

- No Antiderivative
	- E.x. $f(x) = \exp(-x^2)$
- Only sampled points
- Easier than finding antiderivative
- Irregular or scattered data
- High dimensional integrals
- Complex domains
- Numerical verification

Numerical Integration

• Midpoint Method

Consider $\cos(nx)$ for $x \in [-1,1]$ and $n \in \mathbb{N}$.

 n^2 equally spaced points on $[-1,1]$.

Construct Gauss-Legendre quadrature $\{x_i, w_i\}_{i=1}^n$ *i*=1

• Gauss-Legendre Integration

$$
\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i})
$$

One-Dimensional Levin Method

Goal: Numerically evaluate integrals of the following form;

$$
I = \int_{a}^{b} f(x)
$$

$\Re e(I) =$ *b a f*(*x*) cos(*g*(*x*))*dx* $f, g : \mathbb{R} \to \mathbb{R}$ and $a < b \in \mathbb{R}$

$\mathfrak{Im}(I) =$ *b a f*(*x*) sin(*g*(*x*))*dx*

Method: Find an antiderivative of the integrand in Eq.(1).

$f(x)$ exp(*ig*(*x*))*dx*

(1)

$$
\frac{d}{dx}\left(p(x)\exp(ig(x))\right)
$$

$= p(b) \exp(i g(b)) - p(a) \exp(i g(a))$

Plugging this into *I*, we obtain

$$
I = \int_{a}^{b} \frac{d}{dx} (p(x) \exp(ig(x))) dx =
$$

$$
I = \int_{a}^{b} f(x)
$$

Search for a function $p : \mathbb{R} \to \mathbb{R}$ such that $f(x)$ exp($ig(x)$) =

Goal: Numerically evaluate integrals of the following form;

^I ⁼ [∫] *b a f*(*x*) exp(*ig*(*x*))*dx* Goal: Evaluate the following;

$f(x) \exp(ig(x))dx$ (1)

^I ⁼ [∫] *b a*

Search for a function $p : \mathbb{R} \to \mathbb{R}$ such that

 $f(x)$ exp($ig(x)$) =

$$
f(x) \exp(ig(x))dx \tag{1}
$$

$$
= \frac{d}{dx} (p(x) \exp(i g(x)))
$$

= $(p'(x) + p(x) \cdot ig'(x)) \exp(i g(x))$
= $p'(x) + p(x) \cdot ig'(x)$

Goal: Numerically evaluate integrals of the following form;

^I ⁼ [∫] *b a f*(*x*) exp(*ig*(*x*))*dx* Goal: Evaluate the following;

We define the *k*-point Chebyshev extremal grid on the interval [−1,1] as

$x_{j,k} = \cos \mid \pi$ *k* − *j*

Obtain grid on interval [*a*, *b*] via the map $L : [-1,1] \to [a,b]$

$$
L(x) = \frac{b-a}{2}x + \frac{b+a}{2}
$$

Method of Discretization: Chebyshev Interpolation

Goal: Evaluate the following: First: Find
$$
p(x)
$$
 s.t
\n
$$
I = \int_{a}^{b} f(x) \exp(ig(x)) dx \qquad f(x) = p'(x) + p(x) \cdot ig'
$$

f(*x*) = *p*′(*x*) + *p*(*x*) ⋅ *ig*′(*x*)

$T_0(x) = 1$ $T_{n+1}(x) = 2xT_n(x)$ $T_1(x) = x$ Chebyshev polynomials are defined recursively;

Goal: Evaluate the following: First: Find
$$
p(x)
$$
 s.t
\n
$$
I = \int_{a}^{b} f(x) \exp(ig(x))dx \qquad f(x) = p'(x) + p(x) \cdot ig'(x)
$$

$$
x) - T_{n-1}(x) \qquad T_n(\cos \theta) = \cos(n\theta)
$$

$$
\sum_{k=0}^{n-1} T_i(x_{k,n}) T_j(x_{k,n}) = \begin{cases} 0 & i \neq j \\ n & i = j = 0 \\ n/2 & i = j \neq 0 \end{cases}
$$

They also satisfy the following orthogonality relation:

Method of Discretization: Chebyshev Interpolation

$$
f(x) = \sum_{i=0}^{n-1} a_i T_i(x)
$$

Exploiting the orthogonality relation, the coefficients $\{a_i\}$ of the expansion are determined.

$$
f(x) = \sum_{i=0}^{n-1} a_i T_i(x) \qquad \Longleftrightarrow \qquad f(x_{j,k}) = \sum_{i=0}^{n-1} a_i T_i(x_{j,k}) \qquad \forall
$$

-
- Moral: Given the values of a function at the Chebyshev nodes, we can interpolate the

function everywhere.

Goal: Evaluate the following: First: Find
$$
p(x)
$$
 s.t
\n
$$
I = \int_{a}^{b} f(x) \exp(ig(x))dx \qquad f(x) = p'(x) + p(x) \cdot ig'
$$

We can express a function f as a linear combination of these Chebyshev Polynomials, and evaluate such at the grid points $\{x_{j,k}\}\.$

k

k simply evaluates $f'(x) = \sum a_i T'_i(x)$ at the Chebyshev nodes. *n*−1 ∑ $i=0$ $a_i T_i'(x)$

$$
f(x_{1,k}) = \begin{pmatrix} f'(x_{1,k}) \\ \vdots \\ f'(x_{k,k}) \end{pmatrix}
$$

$$
\H(x)
$$

at the *k* Chebyshev nodes:
$$
[f] = \begin{pmatrix} f(x_{1,k}) \\ \vdots \\ f(x_{k,k}) \end{pmatrix}
$$

^I ⁼ [∫] *b a* $f(x) \exp(i g(x)) dx$ $f(x) = p'(x) + p(x) \cdot ig'(x)$ Goal: Evaluate the following; First: Find $p(x)$ s.t

Let f denote the *k*-vector of evaluations

Denote \mathcal{D}_k the $k \times k$ spectral differentiation matrix which sends $[f] \stackrel{\mathcal{D}_k}{\rightarrow} [f']$. That is,

 $\ddot{\bullet}$

$$
\begin{pmatrix} p(x_{1,k}) \\ \vdots \\ p(x_{k,k}) \end{pmatrix} \begin{pmatrix} p'(x_{1,k}) + ig'(x_{1,k})p(x_{1,k}) \\ \vdots \\ p'(x_{k,k}) + ig'(x_{k,k})p(x_{k,k}) \end{pmatrix} = [J]
$$

 \bm{f}

Goal: Evaluate the following; First: Find
$$
p(x)
$$
 s.t Notation:
\n
$$
I = \int_{a}^{b} f(x) \exp(ig(x)) dx \qquad f(x) = p'(x) + p(x) \cdot ig'(x) \qquad [f] = \begin{pmatrix} f(x_{1,k}) \\ \vdots \\ f(x_{k,k}) \end{pmatrix}
$$

 $g'(x_{1,k})$ … 0 \ddotsc 0 … $g'(x_{k,k})$

Method of Discretization: Chebyshev Interpolation

Now consider the following matrix $\mathscr A$ given by; $=\mathscr{D}_k + i$ Then, applying $\mathscr A$ to [p], we find, $[p] = \mathcal{D}_k$ $p(x_{1,k})$ $\ddot{\bullet}$ $p(x_{k,k})$ + *i* $g'(x_{1,k})$ … 0 \ddotsc 0 … $g'(x_{k,k})$

Given the subinterval $[a_0, b_0] \subset [a, b]$ and associated nodes $\{x_{j,k}\}\$, the following approximation is made;

$$
\int_{a_0}^{b_0} f(x) \exp(i g(x)) dx \approx p(x_{k,k}) \exp(i (g(x_{k,k})) - p(x_{1,k}) \exp(i g(x_{1,k}))
$$

Goal: Evaluate the following: First: Find
$$
p(x)
$$
 s.t Notation:
\n
$$
I = \int_{a}^{b} f(x) \exp(ig(x)) dx \qquad f(x) = p'(x) + p(x) \cdot ig'(x) \qquad [f] = \begin{pmatrix} f(x_{1,k}) \\ \vdots \\ f(x_{k,k}) \end{pmatrix}
$$

$\mathscr{A}[p] = [f]$

-
- $[p] = \mathscr{A}^{-1}[f]$
	-

Method of Discretization: Chebyshev Interpolation

Numerically inverting $\mathscr A$ via QR or SVD, we obtain:

 $f(x_{k,k})$

Implementing the Adaptive Algorithm

Numerical Experiments

^I ⁼ [∫] *b a f*(*x*) exp(*ig*(*x*))*dx* Goal: Evaluate the following; First: Find $p(x)$ s.t $f(x) = p'(x) + p(x) \cdot ig'(x)$ Notation: $[f] =$ $f(x_{1,k})$ $\ddot{\cdot}$ $f(x_{k,k})$ Estimate on $[a_0, b_0] \subset [a, b]$: $I_{a_0b_0} = p(x_{k,k}) \exp(i(g(x_{k,k})) - p(x_{1,k}) \exp(i(g(x_{1,k}))$

$$
I_1(x) = \int_0^1 \exp(i\lambda x^2) \exp(-x) x dx
$$

\n
$$
f(x) = \exp(-x)x
$$

\n
$$
g(x) = \lambda x^2
$$

$$
I_2(x) = \int_0^1 \exp(i\lambda x^4) \frac{1}{0.01 + x^4} dx
$$

$$
f(x) = \frac{1}{0.01 + x^4}
$$

$$
g(x) = \lambda x^4
$$

Source: [1]

Two-Dimensional Levin Method

$$
I = \iint_R f(x, y) \exp(i\overline{\omega})
$$

1. \vec{g} : $\mathbb{R}^2 \to \mathbb{R}^2$, 2. $f: \mathbb{R}^2 \to \mathbb{R},$ 3. $\vec{\omega} \in \mathbb{R}^2$, 4. $R = [a, b] \times [c, d] \subset \mathbb{R}^2$

$$
sp(i\overrightarrow{w}\cdot\overrightarrow{g}(x,y))dxdy
$$

$$
\Re e\{I\} = \iint_R f(x, y) \cos(\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y)) dx
$$

$$
\mathfrak{S}m\{I\} = \iint_R f(x, y)\sin(\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y))dxdy
$$

Method: Find an antiderivative of the integrand in Eq.(1).

$$
\Big\}.
$$

Goal: Generalize to Two Dimensions

$$
I = \iint_R f(x, y) \text{e}x
$$

Search for a function \overrightarrow{p} : $\mathbb{R}^2 \to \mathbb{R}^2$ such that $f(x, y) \exp(i\vec{\omega} \cdot \vec{g}(x, y)) = \nabla \cdot (\vec{p})(x, y)$

Plugging this into *I* and applying the divergence theorem yields

$$
I = \iint_R \nabla \cdot (\overrightarrow{p}(x, y) \exp(i\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y)) dx dy = \int_{\partial R} \overrightarrow{p}(x, y) \exp(i\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y)) dx dy
$$

 $f(x, y) \exp(i\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y)) dxdy$ (1)

$$
\nabla \cdot (\overrightarrow{p}(x, y) \exp(i\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y)))
$$

Goal: Generalize to Two Dimensions

$$
I = \iint_R f(x, y) \text{e}x
$$

Search for a function \overrightarrow{p} : $\mathbb{R}^2 \to \mathbb{R}^2$ such that \implies $f(x, y) = \nabla \cdot \overrightarrow{p}(x, y) + i\omega^t D \overrightarrow{g}(x, y) \overrightarrow{p}(x, y)$ **Solution**

 $f(x, y) \exp(i\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y)) dxdy$ (1)

 $f(x, y) \exp(i\vec{\omega} \cdot \vec{g}(x, y)) = \nabla \cdot (\vec{p}(x, y) \exp(i\vec{\omega} \cdot \vec{g}(x, y)))$ ⃗

 $= (\nabla \cdot \overrightarrow{p}(x, y) + i\omega^{t}D\overrightarrow{g}(x, y)\overrightarrow{p}(x, y)) \exp(i\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y))$

⃗

Goal: Generalize to Two Dimensions

Method of Discretization: Two Dimensional Chebyshev Interpolation

$$
I \otimes \mathcal{D}[f] = \left[\frac{\partial f}{\partial x}\right]
$$

The matrix $\mathscr A$ is defined as

$$
\frac{\partial f}{\partial x}\Bigg] \qquad \qquad \mathfrak{D} \otimes I[f] = \left[\frac{\partial f}{\partial y}\right] \qquad \qquad \mathfrak{A} \otimes \mathfrak{B} = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1m}B \\ a_{21}B & a_{22}B & \cdots & a_{2m}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nm}B \end{bmatrix}
$$

$$
\mathscr{A} = \left(I \otimes \mathscr{D} \quad \mathscr{D} \otimes I\right) + \left(\text{diag}(\omega_1) \quad \text{diag}(\omega_2)\right) \begin{pmatrix} \text{diag}\left[\frac{\partial g_1}{\partial x_1}\right] & \text{diag}\left[\frac{\partial g_1}{\partial x_2}\right] \\ \text{diag}\left[\frac{\partial g_2}{\partial x_1}\right] & \text{diag}\left[\frac{\partial g_2}{\partial x_2}\right] \end{pmatrix}
$$

$$
\mathscr{A}\left(\begin{bmatrix}p_1\\p_2\end{bmatrix}\right) = [f]
$$

Method of Discretization: Two Dimensional Chebyshev Interpolation

Consider the special differentiation matrix $\mathcal D$ from the 1-dimensional discretization.

Method of Discretization: Two Dimensional Chebyshev Interpolation

$$
\mathscr{A}\begin{pmatrix} [p_1] \\ [p_2] \end{pmatrix} = [f] \longrightarrow \begin{pmatrix} 1 & \cdots & 1 \\ [p_1, \cdots, p_n] & \cdots & 1 \end{pmatrix}
$$

We obtain the values of p_1 and p_2 at the 2-dimensional Chebyshev quadrature, again numerically inverting $\mathscr A$ via QR or SVD.

Given a sub-rectangle $R_0 \subset R$ and associate

$$
\begin{pmatrix} [p_1] \\ [p_2] \end{pmatrix} = \mathscr{A}^{-1}[f]
$$

∬*R*0 *f*(*x*, *y*)exp(*iω* ⋅ *g* (⃗ $f(x, y)$)*dxdy* = $\int_{\partial R_0}$

 ∂R_0 is the union of four lines, the integral over each of which is approximated via 1d method.

$$
\text{d nodes } \{x_{i,k}, y_{j,k}\}, \text{ we have}
$$
\n
$$
= \int_{\partial R_0} \overrightarrow{p}(x, y) \exp(i\overrightarrow{\omega} \cdot \overrightarrow{g}(x, y)) dxdy
$$

Implementing the Adaptive Algorithm

Closing Remarks

I am currently working on speeding up the algorithm Cases where *Dg* reaches a singularity, computation time is length

References

[1] Shukui Chen, Kirill Serkh, James Bremer. *The Adaptive Levin Method* [2] David Levin. *Procedures for Computing One- and Two-Dimensional . Integrals of Functions with Rapid Irregular Oscillations*